34 resultados para Stromal cell
Resumo:
It is not known how naive B cells compute divergent chemoattractant signals of the T-cell area and B-cell follicles during in vivo migration. Here, we used two-photon microscopy of peripheral lymph nodes (PLNs) to analyze the prototype G-protein-coupled receptors (GPCRs) CXCR4, CXCR5, and CCR7 during B-cell migration, as well as the integrin LFA-1 for stromal guidance. CXCR4 and CCR7 did not influence parenchymal B-cell motility and distribution, despite their role during B-cell arrest in venules. In contrast, CXCR5 played a nonredundant role in B-cell motility in follicles and in the T-cell area. B-cell migration in the T-cell area followed a random guided walk model, arguing against directed migration in vivo. LFA-1, but not α4 integrins, contributed to B-cell motility in PLNs. However, stromal network guidance was LFA-1 independent, uncoupling integrin-dependent migration from stromal attachment. Finally, we observed that despite a 20-fold reduction of chemokine expression in virus-challenged PLNs, CXCR5 remained essential for B-cell screening of antigen-presenting cells. Our data provide an overview of the contribution of prototype GPCRs and integrins during naive B-cell migration and shed light on the local chemokine availability that these cells compute.
Resumo:
After organ transplantation, recipient T cells contribute to graft rejection. Mesenchymal stromal cells from the bone marrow (BM-MSCs) are known to suppress allogeneic T-cell responses, suggesting a possible clinical application of MSCs in organ transplantation. Human liver grafts harbor resident populations of MSCs (L-MSCs). We aimed to determine the immunosuppressive effects of these graft-derived MSCs on allogeneic T-cell responses and to compare these with the effects of BM-MSCs. BM-MSCs were harvested from aspirates and L-MSCs from liver graft perfusates. We cultured them for 21 days and compared their suppressive effects with the effects of BM-MSCs on allogeneic T-cell responses. Proliferation, cytotoxic degranulation, and interferon-gamma production of alloreactive T cells were more potently suppressed by L-MSCs than BM-MSCs. Suppression was mediated by both cell-cell contact and secreted factors. In addition, L-MSCs showed ex vivo a higher expression of PD-L1 than BM-MSCs, which was associated with inhibition of T-cell proliferation and cytotoxic degranulation in vitro. Blocking PD-L1 partly abrogated the inhibition of cytotoxic degranulation by L-MSCs. In addition, blocking indoleamine 2,3-dioxygenase partly abrogated the inhibitive effects of L-MSCs, but not BM-MSCs, on T-cell proliferation. In conclusion, liver graft-derived MSC suppression of allogeneic T-cell responses is stronger than BM-MSCs, which may be related to in situ priming and mobilization from the graft. These graft-derived MSCs may therefore be relevant in transplantation by promoting allohyporesponsiveness.
Resumo:
Tooth resorption is among the most common and most challenging problems in feline dentistry It is a progressive disease eventually leading to tooth loss and often root replacement. The etiology of moth resorption remains obscure and to date no effective therapeutic approach is known. The present study is aimed at assessing the reliability of radiographic imaging and addressing the possible involvement of receptor activator of NF kappa B (RANK), its ligand (RANKL), and osteoprotegerin (OPG) in the process of tooth resorption. Teeth from 8 cats were investigated by means of radiographs and paraffin sections followed by immunolabeling. Six cats were diagnosed with tooth resorption based on histopathologic and radiographic findings. Samples were classified according to a four-stage diagnostic system. Radiologic assessment of tooth resorption correlated very strongly with histopathologic findings. Tooth resorption was accompanied by a strong staining with all three antibodies used, especially with anti-RANK and anti-RANKL antibodies. The presence of OPG and RANKL at the resorption site is indicative of repair attempts by fibroblasts and stromal cells. These findings should be extended by further investigations in order to elucidate the pathophysiologic processes underlying tooth resorption that might lead to prophylactic and/or therapeutic measures. J Vet Dent 27(2); 75 - 83, 2010
Resumo:
Cell therapy along with growth factor injection is currently widely investigated to restore the intervertebral disc. However, there is increasing evidence that transplanted unconditioned bone marrow-derived stromal cells (BMSCs) cannot thrive in the intervertebral disc "niche". Moreover, uncertainty exists with respect to the cell phenotype that would be suitable to inject. The intervertebral disc cell phenotype only recently has been started to be characterised using transcriptomics profiling. Recent findings suggest that cytokeratin 19 (KRT-19) could be used as a potential candidate marker for the intervertebral disc, or more specifically the nucleus pulposus cell (NPC) phenotype. We present in vitro cell culture data using alginate bead culture of primary human BMSCs exposed to the standard chondrogenic stimulus, transforming growth factor beta-1 (TGF-β), the growth and differentiation factor 5 and/or bovine NPCs to induce a potential "discogenic" pathway. Chondrogenic induction via TGF-β pathway provoked down-regulation of KRT-19 gene expression in four out of five donors after 18 days of culture, whereas KRT-19 expression remained unchanged in the "discogenic" groups. In addition, the ratio of aggrecan/collagen II gene expression showed a remarkable difference (of at least 3 magnitudes) between the chondrogenic stimulus (low ratio) and the discogenic stimulus (high ratio). Therefore, KRT-19 and aggrecan/collagen II ratio may be potential markers to distinguish chondrogenic from "discogenic" differentiation.
Resumo:
Mesenchymal stromal cells (MSCs), which reside within various tissues, are utilized in the engineering of cartilage tissue. Dexamethasone (DEX)--a synthetic glucocorticoid--is almost invariably applied to potentiate the growth-factor-induced chondrogenesis of MSCs in vitro, albeit that this effect has been experimentally demonstrated only for transforming-growth-factor-beta (TGF-β)-stimulated bone-marrow-derived MSCs. Clinically, systemic glucocorticoid therapy is associated with untoward side effects (e.g., bone loss and increased susceptibility to infection). Hence, the use of these agents should be avoided or limited. We hypothesize that the influence of DEX on the chondrogenesis of MSCs depends upon their tissue origin and microenvironment [absence or presence of an extracellular matrix (ECM)], as well as upon the nature of the growth factor. We investigated its effects upon the TGF-β1- and bone-morphogenetic-protein 2 (BMP-2)-induced chondrogenesis of MSCs as a function of tissue source (bone marrow vs. synovium) and microenvironment [cell aggregates (no ECM) vs. explants (presence of a natural ECM)]. In aggregates of bone-marrow-derived MSCs, DEX enhanced TGF-β1-induced chondrogenesis by an up-regulation of cartilaginous genes, but had little influence on the BMP-2-induced response. In aggregates of synovial MSCs, DEX exerted no remarkable effect on either TGF-β1- or BMP-2-induced chondrogenesis. In synovial explants, DEX inhibited BMP-2-induced chondrogenesis almost completely, but had little impact on the TGF-β1-induced response. Our data reveal that steroids are not indispensable for the chondrogenesis of MSCs in vitro. Their influence is context dependent (tissue source of the MSCs, their microenvironment and the nature of the growth-factor). This finding has important implications for MSC based approaches to cartilage repair.
Resumo:
Background: Microfluidics system are novel tools to study cell-cell interactions in vitro. This project focuses on the development of a new microfluidic device to co-culture alveolar epithelial cells and mesenchymal stem cells to study cellular interactions involved in healing the injured alveolar epithelium. Methods: Microfluidic systems in polydimethylsiloxane were fabricated by soft lithography. The alveolar A549 epithelial cells were seeded and injury tests were made on the cells by perfusion with media containing H2O2 or bleomycin during 6 or 18hrs. Rat Bone marrow derived stromal cells (BMSC) were then introduced into the system and cell-cell interaction was studied over 24 hrs. Results: A successful co-culture of A549 alveolar epithelial cells and BMS was achieved in the microfluidic system. The seeded alveolar epithelial cells and BMSC adhered to the bottom surface of the microfluidic device and proliferated under constant perfusion. Epithelial injury to mimic mechanisms seen in idiopathic pulmonary fibrosis was induced in the microchannels by perfusing with H2O2 or bleomycin. Migration of BMSC towards the injured epithelium was observed as well as cell-cell interaction between the two cell types was also seen. Conclusion: We demonstrate a novel microfluidic device aimed at showing interactions between different cell types on the basis of a changing microenvironment. Also we were able to confirm interaction between injured alvolar epithelium and BMSC, and showed that BMSC try to heal the injured epitelium.
Resumo:
Thymic stromal lymphopoietin (TSLP) is a novel cytokine that plays a central role in T helper 2 (Th2) cell differentiation and allergic inflammation. It is predominantly expressed by epithelial cells, and its expression is increased in patients with atopic dermatitis and asthma. Mice overexpressing TSLP in the skin develop allergic dermatitis and mice overexpressing TSLP in lungs develop asthma-like disease. However, it is not known whether TSLP plays an important role in equine allergies. Therefore, we cloned and sequenced the complete translated region of equine TSLP gene and measured its expression in various tissues. The equine TSLP gene is organized in 4 exons and encodes a protein of 143 amino acids, which has 62% amino acid identity with human TSLP.
Resumo:
The molecular engineering of cell-instructive artificial extracellular matrices is a powerful means to control cell behavior and enable complex processes of tissue formation and regeneration. This work reports on a novel method to produce such smart biomaterials by recapitulating the crosslinking chemistry and the biomolecular characteristics of the biopolymer fibrin in a synthetic analog. We use activated coagulation transglutaminase factor XIIIa for site-specific coupling of cell adhesion ligands and engineered growth factor proteins to multiarm poly(ethylene glycol) macromers that simultaneously form proteolytically sensitive hydrogel networks in the same enzyme-catalyzed reaction. Growth factor proteins are quantitatively incorporated and released upon cell-derived proteolytic degradation of the gels. Primary stromal cells can invade and proteolytically remodel these networks both in an in vitro and in vivo setting. The synthetic ease and potential to engineer their physicochemical and bioactive characteristics makes these hybrid networks true alternatives for fibrin as provisional drug delivery platforms in tissue engineering.
Resumo:
The lack of effective therapies for end-stage lung disease validates the need for stem cell-based therapeutic approaches as alternative treatment options. In contrast with exogenous stem cell sources, the use of resident progenitor cells is advantageous considering the fact that the lung milieu is an ideal and familiar environment, thereby promoting the engraftment and differentiation of transplanted cells. Recent studies have shown the presence of multipotent 'mesenchymal stem cells' in the adult lung. The majority of these reports are, however, limited to animal models, and to date, there has been no report of a similar cell population in adult human lung parenchyma. Here, we show the identification of a population of primary human lung parenchyma (pHLP) mesenchymal stromal cells (MSCs) derived from intraoperative normal lung parenchyma biopsies. Surface and intracellular immunophenotyping by flow cytometry revealed that cultures do not contain alveolar type I epithelial cells or Clara cells, and are devoid of the following hematopoietic markers: CD34, CD45 and CXCR4. Cells show an expression pattern of surface antigens characteristic of MSCs, including CD73, CD166, CD105, CD90 and STRO-1. As per bone marrow MSCs, our pHLP cells have the ability to differentiate along the adipogenic, osteogenic and chondrogenic mesodermal lineages when cultured in the appropriate conditions. In addition, when placed in small airway growth media, pHLP cell cultures depict the expression of aquaporin 5 and Clara cell secretory protein, which is identified with that of alveolar type I epithelial cells and Clara cells, respectively, thereby exhibiting the capacity to potentially differentiate into airway epithelial cells. Further investigation of these resident cells may elucidate a therapeutic cell population capable of lung repair and/or regeneration.
Resumo:
Thymic stromal lymphopoietin (TSLP) is constitutively expressed in the intestine and is known to regulate inflammation in models of colitis. We show that steady-state TSLP expression requires intestinal bacteria and has an important role in limiting the expansion of colonic T helper type 17 (Th17) cells. Inappropriate expansion of the colonic Th17 cells occurred in response to an entirely benign intestinal microbiota, as determined following the colonization of germ-free C57BL/6 or TSLPR(-/-) mice with the altered Schaedler flora (ASF). TSLP-TSLPR (TSLP receptor) interactions also promoted the expansion of colonic Helios(-)Foxp3(+) regulatory T cells, necessary for the control of inappropriate Th17 responses following ASF bacterial colonization. In summary, these data reveal an important role for TSLP-TSLPR signaling in promoting steady-state mutualistic T-cell responses following intestinal bacterial colonization.
Resumo:
BACKGROUND AND AIMS: Reliable prognostic markers based on biopsy specimens of colorectal cancer (CRC) are currently missing. We hypothesize that assessment of T-cell infiltration in biopsies of CRC may predict patient survival and TNM-stage before surgery. METHODS: Pre-operative biopsies and matched resection specimens from 130 CRC patients treated from 2002-2011 were included in this study. Whole tissue sections of biopsy material and primary tumors were immunostained for pancytokeratin and CD8 or CD45RO. Stromal (s) and intraepithelial (i) T-cell infiltrates were analyzed for prediction of patient survival as well as clinical and pathological TNM-stage of the primary tumor. RESULTS: CD8 T-cell infiltration in the preoperative biopsy was significantly associated with favorable overall survival (CD8i p = 0.0026; CD8s p = 0.0053) in patients with primary CRC independently of TNM-stage and postoperative therapy (HR [CD8i] = 0.55 (95% CI: 0.36-0.82), p = 0.0038; HR [CD8s] = 0.72 (95% CI: 0.57-0.9), p = 0.0049). High numbers of CD8i in the biopsy predicted earlier pT-stage (p < 0.0001) as well as absence of nodal metastasis (p = 0.0015), tumor deposits (p = 0.0117), lymphatic (p = 0.008) and venous invasion (p = 0.0433) in the primary tumor. Infiltration by CD45ROs cells was independently associated with longer survival (HR = 0.76 (95% CI: 0.61-0.96), p = 0.0231) and predicted absence of venous invasion (p = 0.0025). CD8 counts were positively correlated between biopsies and the primary tumor (r = 0.42; p < 0.0001) and were reproducible between observers (ICC [CD8i] = 0.95, ICC [CD8s] = 0.75). For CD45RO, reproducibility was poor to moderate (ICC [CD45i] = 0.16, ICC [CD45s] = 0.49) and correlation with immune infiltration in the primary tumor was fair and non-significant (r[CD45s] = 0.16; p = 0.2864). For both markers, no significant relationship was observed with radiographic T-stage, N-stage or M-stage, indicating that assessment of T-cells in biopsy material can add additional information to clinical staging in the pre-operative setting. CONCLUSIONS: T-cell infiltration in pre-operative biopsy specimens of CRC is an independent favorable prognostic factor and strongly correlates with absence of nodal metastasis in the resection specimen. Quantification of CD8i is highly reproducible and allows superior prediction of clinicopathological features as compared to CD45RO. The assessment of CD8i infiltration in biopsies is recommended for prospective investigation.
Resumo:
OBJECTIVE To assess the expression and regulation of antilipoprotein D (ApoD) and antilipoprotein E (ApoE) in human endometrium. STUDY DESIGN Endometrial biopsies from healthy, regularly cycling women were collected during the late proliferative and mid-secretory phase. mRNA gene expression of ApoD and ApoE was determined using real-time PCR in whole tissue, in isolated stromal (ESC), epithelial (EEC) and CD45(+) leukocytes (EIC), as well as after hormonal stimulation of ESC and EEC in vitro. Protein expression was analyzed using immunohistochemistry. RESULTS ApoD and ApoE mRNA was expressed in all cell types examined. A rise in ApoD mRNA expression was seen in whole endometrium, ESC, and EEC in the secretory phase, as well as after hormonal stimulation of ESC and EEC in vitro. ApoE mRNA was significantly upregulated in whole endometrium of secretory phase biopsies, while its expression was not altered by progesterone in vitro. Immunohistochemistry of whole endometrial tissue localized ApoD mainly in ESC and EEC. While ApoE was localized slightly in ESC, it was particularly noted on the surface of secretory phase endothelial cells. CONCLUSION We demonstrate for the first time the cell-type and cycle dependent expression of ApoD and ApoE within human endometrium, suggesting their role in endometrial modulation.
Resumo:
Cytotoxic CD8(+) T cells (CTLs) play a major role in host defense against intracellular pathogens, but a complete clearance of pathogens and return to homeostasis requires the regulated interplay of the innate and acquired immune systems. Here, we show that interferon γ (IFNγ) secreted by effector CTLs stimulates hematopoiesis at the level of early multipotent hematopoietic progenitor cells and induces myeloid differentiation. IFNγ did not primarily affect hematopoietic stem or progenitor cells directly. Instead, it promoted the release of hematopoietic cytokines, including interleukin 6 from bone marrow mesenchymal stromal cells (MSCs) in the hematopoietic stem cell niche, which in turn reduced the expression of the transcription factors Runx-1 and Cebpα in early hematopoietic progenitor cells and increased myeloid differentiation. Therefore, our study indicates that, during an acute viral infection, CTLs indirectly modulate early multipotent hematopoietic progenitors via MSCs in order to trigger the temporary activation of emergency myelopoiesis and promote clearance of the infection.
Resumo:
Type 2 inflammation underlies allergic diseases such as atopic dermatitis, which is characterized by the accumulation of basophils and group 2 innate lymphoid cells (ILC2s) in inflamed skin lesions. Although murine studies have demonstrated that cutaneous basophil and ILC2 responses are dependent on thymic stromal lymphopoietin, whether these cell populations interact to regulate the development of cutaneous type 2 inflammation is poorly defined. In this study, we identify that basophils and ILC2s significantly accumulate in inflamed human and murine skin and form clusters not observed in control skin. We demonstrate that murine basophil responses precede ILC2 responses and that basophils are the dominant IL-4-enhanced GFP-expressing cell type in inflamed skin. Furthermore, basophils and IL-4 were necessary for the optimal accumulation of ILC2s and induction of atopic dermatitis-like disease. We show that ILC2s express IL-4Rα and proliferate in an IL-4-dependent manner. Additionally, basophil-derived IL-4 was required for cutaneous ILC2 responses in vivo and directly regulated ILC2 proliferation ex vivo. Collectively, these data reveal a previously unrecognized role for basophil-derived IL-4 in promoting ILC2 responses during cutaneous inflammation.