18 resultados para Streptoccus suis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 14-kDa outer membrane protein (OMP) was purified from Actinobacillus pleuro-pneumoniae serotype 2. The protein strongly reacts with sera from pigs experimentally or naturally infected with any of the 12 serotypes of A. pleuropneumoniae. The gene encoding this protein was isolated from a gene library of A. pleuropneumoniae serotype 2 reference strain by immunoscreening. Expression of the cloned gene in Escherichia coli revealed that the protein is also located in the outer membrane fraction of the recombinant host. DNA sequence analysis of the gene reveals high similarity of the protein's amino acid sequence to that of the E. coli peptidoglycan-associated lipoprotein PAL, to the Haemophilus influenzae OMP P6 and to related proteins of several other Gram-negative bacteria. We have therefore named the 14-kDa protein PalA, and its corresponding gene, palA. The 20 amino-terminal amino acid residues of PalA constitute a signal sequence characteristic of membrane lipoproteins of prokaryotes with a recognition site for the signal sequence peptidase II and a sorting signal for the final localization of the mature protein in the outer membrane. The DNA sequence upstream of palA contains an open reading frame which is highly similar to the E. coli tolB gene, indicating a gene cluster in A. pleuropneumoniae which is very similar to the E. coli tol locus. The palA gene is conserved and expressed in all A. pleuropneumoniae serotypes and in A. lignieresii. A very similar palA gene is present in A. suis and A. equuli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polyphasic taxonomic analysis was carried out on 11 uncommon Gram-stain-negative, non-motile, catalase- and oxidase-positive, but indole-negative, bacterial strains isolated from tortoises. Phenotypically and genetically they represented a homogeneous group of organisms most closely related to, but distinct from, Uruburuella suis. In a reconstructed 16S rRNA gene tree they clustered on a monophyletic branch next to U. suis with gene similarities between strains of 99.5-100%, and of up to 98.2% with U. suis . DNA-DNA hybridization indicated the organisms represented a novel species with only 40% DNA-DNA similarity with U. suis . Partial sequencing of rpoB resulted in two subclusters confirming the 16S rRNA gene phylogeny; both genes allowed clear separation and identification of the novel species. Furthermore, they could be unambiguously identified by matrix-assisted laser desorption ionization time-of-flight MS, where, again, they formed a highly homogeneous cluster separate from U. suis and other members of the family Neisseriaceae . The major fatty acids were C(16 : 0) and summed feature C(16 : 1)ω7c/iso-C(15 : 0) 2-OH. The DNA G+C content was 54.4 mol%. Based on phenotypic and genetic data we propose classifying these organisms as representatives of a novel species named Uruburuella testudinis sp. nov. The type strain is 07_OD624(T) ( = DSM 26510(T) = CCUG 63373(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tritrichomonas spp. are parasitic protozoans that proliferate on mucus membranes of the urogenital, gastro-intestinal or nasal tract. For instance, Tritrichomonas foetus is an important cause of reproductive failure in cattle. Some years ago, T. foetus was also identified as a causative agent of diarrhoea in cats. Previous studies on the morphological, physiological and molecular levels have raised doubts as to the phylogenetic relationship among some Tritrichomonas species, particularly in relation to T. foetus, Tritrichomonas suis, and Tritrichomonas mobilensis. With the advent of molecular genetic tools, it has become clear that these three tritrichomonad species are closely related or may even represent the same species. Indeed, since recently, T. suis and T. foetus are generally considered as one species, with T. mobilensis being a closely related sister taxon. To date, molecular studies have not yet been able to resolve the taxonomic (specific) status of T. foetus from cattle and cats. In the future, novel genomic approaches, particularly those involving next generation sequencing are poised to resolve the taxonomy of Tritrichomonas spp. Here, we review the literature on the current state of knowledge of the taxonomy of T. foetus, T. suis, and T. mobilensis with special reference to the relationship between T. foetus from cattle and cats.