37 resultados para Stratosphere.
Resumo:
In the first decades of the 20th century, aerological observations were for the first time performed in tropical regions. One of the most prominent endeavours in this respect was ARTHUR BERSON’s aerological expedition to East Africa. Although the main target was the East African monsoon circulation, the expedition provided also other insights that profoundly changed meteorology and climatology. BERSON observed that the tropical tropopause was much higher and colder than that over midlatitudes. Moreover, westerly winds were observed in the lower stratosphere, apparently contradicting the high-altitude equatorial easterly winds that were known since the Krakatoa eruption (‘‘Krakatoa easterlies’’). The puzzle was only resolved five decades later with the discovery of the Quasi-Biennial Oscillation (QBO). In this paper we briefly summarize the expedition of BERSON and review the results in a historical context and in the light of the current research. In the second part of the paper we re-visit BERSON’s early aerological observations, which we have digitized. We compare the observed wind profiles with corresponding profiles extracted from the ‘‘Twentieth Century Reanalysis’’, which provides global three-dimensional weather information back to 1871 based on an assimilation of sea-level and surface pressure data. The comparison shows a good agreement at the coast but less good agreement further inland, at the shore of Lake Victoria, where the circulation is more complex. These results demonstrate that BERSON’s observations are still valuable today as input to current reanalysis systems or for their validation.
Resumo:
Previous studies have highlighted the severity of detrimental effects for life on earth after an assumed regionally limited nuclear war. These effects are caused by climatic, chemical and radiative changes persisting for up to one decade. However, so far only a very limited number of climate model simulations have been performed, giving rise to the question how realistic previous computations have been. This study uses the coupled chemistry climate model (CCM) SOCOL, which belongs to a different family of CCMs than previously used, to investigate the consequences of such a hypothetical nuclear conflict. In accordance with previous studies, the present work assumes a scenario of a nuclear conflict between India and Pakistan, each applying 50 warheads with an individual blasting power of 15 kt ("Hiroshima size") against the major population centers, resulting in the emission of tiny soot particles, which are generated in the firestorms expected in the aftermath of the detonations. Substantial uncertainties related to the calculation of likely soot emissions, particularly concerning assumptions of target fuel loading and targeting of weapons, have been addressed by simulating several scenarios, with soot emissions ranging from 1 to 12 Tg. Their high absorptivity with respect to solar radiation leads to a rapid self-lofting of the soot particles into the strato- and mesosphere within a few days after emission, where they remain for several years. Consequently, the model suggests earth's surface temperatures to drop by several degrees Celsius due to the shielding of solar irradiance by the soot, indicating a major global cooling. In addition, there is a substantial reduction of precipitation lasting 5 to 10 yr after the conflict, depending on the magnitude of the initial soot release. Extreme cold spells associated with an increase in sea ice formation are found during Northern Hemisphere winter, which expose the continental land masses of North America and Eurasia to a cooling of several degrees. In the stratosphere, the strong heating leads to an acceleration of catalytic ozone loss and, consequently, to enhancements of UV radiation at the ground. In contrast to surface temperature and precipitation changes, which show a linear dependence to the soot burden, there is a saturation effect with respect to stratospheric ozone chemistry. Soot emissions of 5 Tg lead to an ozone column reduction of almost 50% in northern high latitudes, while emitting 12 Tg only increases ozone loss by a further 10%. In summary, this study, though using a different chemistry climate model, corroborates the previous investigations with respect to the atmospheric impacts. In addition to these persistent effects, the present study draws attention to episodically cold phases, which would likely add to the severity of human harm worldwide. The best insurance against such a catastrophic development would be the delegitimization of nuclear weapons.
Resumo:
We provide statistical evidence of the effect of the solar wind dynamic pressure (Psw) on the northern winter and spring circulations. We find that the vertical structure of the Northern Annular Mode (NAM), the zonal mean circulation, and Eliassen-Palm (EP)-flux anomalies show a dynamically consistent pattern of downward propagation over a period of ~45 days in response to positive Psw anomalies. When the solar irradiance is high, the signature of Psw is marked by a positive NAM anomaly descending from the stratosphere to the surface during winter. When the solar irradiance is low, the Psw signal has the opposite sign, occurs in spring, and is confined to the stratosphere. The negative Psw signal in the NAM under low solar irradiance conditions is primarily governed by enhanced vertical EP-flux divergence and a warmer polar region. The winter Psw signal under high solar irradiance conditions is associated with positive anomalies of the horizontal EP-flux divergence at 55°N–75°N and negative anomalies at 25°N–45°N, which corresponds to the positive NAM anomaly. The EP-flux divergence anomalies occur ~15 days ahead of the mean-flow changes. A significant equatorward shift of synoptic-scale Rossby wave breaking (RWB) near the tropopause is detected during January–March, corresponding to increased anticyclonic RWB and a decrease in cyclonic RWB. We suggest that the barotropic instability associated with asymmetric ozone in the upper stratosphere and the baroclinic instability associated with the polar vortex in the middle and lower stratosphere play a critical role for the winter signal and its downward propagation.
Resumo:
An important key for the understanding of the dynamic response to large tropical volcanic eruptions is the warming of the tropical lower stratosphere and the concomitant intensification of the polar vortices. Although this mechanism is reproduced by most general circulation models today, most models still fail in producing an appropriate winter warming pattern in the Northern Hemisphere. In this study ensemble sensitivity experiments were carried out with a coupled atmosphere-ocean model to assess the influence of different ozone climatologies on the atmospheric dynamics and in particular on the northern hemispheric winter warming. The ensemble experiments were perturbed by a single Tambora-like eruption. Larger meridional gradients in the lower stratospheric ozone favor the coupling of zonal wind anomalies between the stratosphere and the troposphere after the eruption. The associated sea level pressure, temperature, and precipitation patterns are more pronounced and the northern hemispheric winter warming is highly significant. Conversely, weaker meridional ozone gradients lead to a weaker response of the winter warming and the associated patterns. The differences in the number of stratosphere-troposphere coupling events between the ensembles experiments indicate a nonlinear response behavior of the dynamics with respect to the ozone and the volcanic forcing.
Resumo:
TEMPERA (TEMPERature RAdiometer) is a new ground-based radiometer which measures in a frequency range from 51–57 GHz radiation emitted by the atmosphere. With this instrument it is possible to measure temperature profiles from ground to about 50 km. This is the first ground-based instrument with the capability to retrieve temperature profiles simultaneously for the troposphere and stratosphere. The measurement is done with a filterbank in combination with a digital fast Fourier transform spectrometer. A hot load and a noise diode are used as stable calibration sources. The optics consist of an off-axis parabolic mirror to collect the sky radiation. Due to the Zeeman effect on the emission lines used, the maximum height for the temperature retrieval is about 50 km. The effect is apparent in the measured spectra. The performance of TEMPERA is validated by comparison with nearby radiosonde and satellite data from the Microwave Limb Sounder on the Aura satellite. In this paper we present the design and measurement method of the instrument followed by a description of the retrieval method, together with a validation of TEMPERA data over its first year, 2012.
Resumo:
Since November 1994, the GROund-based Millimeter-wave Ozone Spectrometer (GROMOS) measures stratospheric and lower mesospheric ozone in Bern, Switzerland (47.95° N, 7.44° E). GROMOS is part of the Network for the Detection of Atmospheric Composition Change (NDACC). In July 2009, a Fast-Fourier-Transform spectrometer (FFTS) has been added as backend to GROMOS. The new FFTS and the original filter bench (FB) measured parallel for over two years. In October 2011, the FB has been turned off and the FFTS is now used to continue the ozone time series. For a consolidated ozone time series in the frame of NDACC, the quality of the stratospheric ozone profiles obtained with the FFTS has to be assessed. The FFTS results from July 2009 to December 2011 are compared to ozone profiles retrieved by the FB. FFTS and FB of the GROMOS microwave radiometer agree within 5% above 20 hPa. A later harmonization of both time series will be realized by taking the FFTS as benchmark for the FB. Ozone profiles from the FFTS are also compared to coinciding lidar measurements from the Observatoire Haute Provence (OHP), France. For the time period studied a maximum mean difference (lidar – GROMOS FFTS) of +3.8% at 3.1 hPa and a minimum mean difference of +1.4% at 8 hPa is found. Further, intercomparisons with ozone profiles from other independent instruments are performed: satellite measurements include MIPAS onboard ENVISAT, SABER onboard TIMED, MLS onboard EOS Aura and ACE-FTS onboard SCISAT-1. Additionally, ozonesondes launched from Payerne, Switzerland, are used in the lower stratosphere. Mean relative differences of GROMOS FFTS and these independent instruments are less than 10% between 50 and 0.1 hPa.
Resumo:
Abstract. In this paper, we compare the diurnal variations in middle-atmospheric water vapor as measured by two ground-based microwave radiometers in the Alpine region near Bern, Switzerland. The observational data set is also compared to data from the chemistry–climate model WACCM. Due to the small diurnal variations of usually less than 1%, averages over extended time periods are required. Therefore, two time periods of five months each, December to April and June to October, were taken for the comparison. The diurnal variations from the observational data agree well with each other in amplitude and phase. The linear correlation coefficients range from 0.8 in the upper stratosphere to 0.5 in the upper mesosphere. The observed diurnal variability is significant at all pressure levels within the sensitivity of the instruments. Comparing our observations with WACCM, we find that the agreement of the phase of the diurnal cycle between observations and model is better from December to April than from June to October. The amplitudes of the diurnal variations for both time periods increase with altitude in WACCM, but remain approximately constant at 0.05 ppm in the observations. The WACCM data are used to separate the processes that lead to diurnal variations in middle-atmospheric water vapor above Bern. The dominating processes were found to be meridional advection below 0.1 hPa, vertical advection between 0.1 and 0.02 hPa and (photo-)chemistry above 0.02 hPa. The contribution of zonal advection is small. The highest diurnal variations in water vapor as seen in the WACCM data are found in the mesopause region during the time period from June to October with diurnal amplitudes of 0.2 ppm (approximately 5% in relative units).
Resumo:
The ground-based radiometer GROMOS, stationed in Bern (47.95° N, 7.44° E), Switzerland, has a unique dataset: it obtains ozone profiles from November 1994 to present with a time resolution of 30 min and equal quality during night- and daytime. Here, we derive a monthly climatology of the daily ozone cycle from 17 yr of GROMOS observation. We present the diurnal ozone variation of the stratosphere and mesosphere. Characterizing the diurnal cycle of stratospheric ozone is important for correct trend estimates of the ozone layer derived from satellite observations. The diurnal ozone cycle from GROMOS is compared to two models: The Whole Atmosphere Community Climate Model (WACCM) and the Hamburg Model of Neutral and Ionized Atmosphere (HAMMONIA). Aura Microwave Limb Sounder (Aura/MLS) ozone data, from night- and daytime overpasses over Bern, have also been included in the comparison. Generally, observation and models show good qualitative agreement: in the lower mesosphere, daytime ozone is for both GROMOS and models around 25% less than nighttime ozone (reference is 22:30–01:30). In the stratosphere, ozone reaches its maximum in the afternoon showing values several percent larger than the midnight value. It is important that diurnal ozone variations of this order are taken into account when merging different data sets for the derivation of long-term ozone trends in the stratosphere. Further, GROMOS and models indicate a seasonal behavior of daily ozone variations in the stratosphere with a larger afternoon maximum during daytime in summer than in winter. At 0.35 hPa, observations from GROMOS and Aura/MLS show a seasonal pattern in diurnal ozone variations with larger relative amplitudes during daytime in winter (−25 ± 5%) than in summer (−18 ± 4%) (compared to mean values around midnight). For the first time, a time series of the diurnal variations in ozone is presented: 17 yr of GROMOS data show strong interannual variations in the diurnal ozone cycle for both the stratosphere and the mesosphere. There are some indications that strong temperature tides can suppress the diurnal variation of stratospheric ozone via the anticorrelation of temperature and ozone. That means the spatio-temporal variability of solar thermal tides seems to affect the diurnal cycle of stratospheric ozone.
Resumo:
Geomagnetic excursions, i.e. short periods in time with much weaker geomagnetic fields and substantial changes in the position of the geomagnetic pole, occurred repeatedly in the Earth's history, e.g. the Laschamp event about 41 kyr ago. Although the next such excursion is certain to come, little is known about the timing and possible consequences for the state of the atmosphere and the ecosystems. Here we use the global chemistry climate model SOCOL-MPIOM to simulate the effects of geomagnetic excursions on atmospheric ionization, chemistry and dynamics. Our simulations show significantly increased concentrations of nitrogen oxides (NOx) in the entire stratosphere, especially over Antarctica (+15%), due to enhanced ionization by galactic cosmic rays. Hydrogen oxides (HOx) are also produced in greater amounts (up to +40%) in the tropical and subtropical lower stratosphere, while their destruction by reactions with enhanced NOx prevails over the poles and in high altitudes (by −5%). Stratospheric ozone concentrations decrease globally above 20 km by 1–2% and at the northern hemispheric tropopause by up to 5% owing to the accelerated NOx-induced destruction. A 5% increase is found in the southern lower stratosphere and troposphere. In response to these changes in ozone and the concomitant changes in atmospheric heating rates, the Arctic vortex intensifies in boreal winter, while the Antarctic vortex weakens in austral winter and spring. Surface wind anomalies show significant intensification of the southern westerlies at their poleward edge during austral winter and a pronounced northward shift in spring. Major impacts on the global climate seem unlikely.
Resumo:
The ground-based radiometer GROMOS, stationed in Bern (47.95° N, 7.44° E), Switzerland, has a unique dataset: it obtains ozone profiles from November 1994 to present with a time resolution of 30 min and equal quality during night- and daytime. Here, we derive a monthly climatology of the daily ozone cycle from 17 yr of GROMOS observation. We present the diurnal ozone variation of the stratosphere and mesosphere. Characterizing the diurnal cycle of stratospheric ozone is important for correct trend estimates of the ozone layer derived from satellite observations. The diurnal ozone cycle from GROMOS is compared to two models: The Whole Atmosphere Community Climate Model (WACCM) and the Hamburg Model of Neutral and Ionized Atmosphere (HAMMONIA). Aura Microwave Limb Sounder (Aura/MLS) ozone data, from night- and daytime overpasses over Bern, have also been included in the comparison. Generally, observation and models show good qualitative agreement: in the lower mesosphere, daytime ozone is for both GROMOS and models around 25% less than nighttime ozone (reference is 22:30–01:30). In the stratosphere, ozone reaches its maximum in the afternoon showing values several percent larger than the midnight value. It is important that diurnal ozone variations of this order are taken into account when merging different data sets for the derivation of long-term ozone trends in the stratosphere. Further, GROMOS and models indicate a seasonal behavior of daily ozone variations in the stratosphere with a larger afternoon maximum during daytime in summer than in winter. At 0.35 hPa, observations from GROMOS and Aura/MLS show a seasonal pattern in diurnal ozone variations with larger relative amplitudes during daytime in winter (−25 ± 5%) than in summer (−18 ± 4%) (compared to mean values around midnight). For the first time, a time series of the diurnal variations in ozone is presented: 17 yr of GROMOS data show strong interannual variations in the diurnal ozone cycle for both the stratosphere and the mesosphere. There are some indications that strong temperature tides can suppress the diurnal variation of stratospheric ozone via the anticorrelation of temperature and ozone. That means the spatio-temporal variability of solar thermal tides seems to affect the diurnal cycle of stratospheric ozone.
Resumo:
The newly developed atmosphere–ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of the interactive chemistry module on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM) and without (NOCHEM) interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The largest differences are found for the atmospheric dynamics in the polar regions, with slightly stronger northern and southern winter polar vortices in CHEM. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parametrization of the absorption of ozone and oxygen in the Lyman-alpha, Schumann–Runge, Hartley, and Higgins bands. This effect is parametrized in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations differ substantially between the two experiments, but their effect on the temperatures is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present day observations. Sudden stratospheric warming events are well reproduced in terms of their frequency, but the distribution amongst the winter months is too uniform. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600–2000 using an ensemble of simulations driven by a spectral solar forcing reconstruction. The amplitude of the reconstruction is large in comparison to other state-of-the-art reconstructions, providing an upper limit for the importance of the solar signal. In the pre-industrial period (1600–1850) the simulated surface temperature trends are in reasonable agreement with temperature reconstructions, although the multi-decadal variability is more pronounced. This enhanced variability can be attributed to the variability in the solar forcing. The simulated temperature reductions during the Maunder Minimum are in the lowest probability range of the proxy records. During the Dalton Minimum, when also volcanic forcing is an important driver of temperature variations, the agreement is better. In the industrial period from 1850 onward SOCOL-MPIOM overestimates the temperature increase in comparison to observational data sets. Sensitivity simulations show that this overestimation can be attributed to the increasing trend in the solar forcing reconstruction that is used in this study and an additional warming induced by the simulated ozone changes.
Resumo:
In this study we compare the diurnal variation in stratospheric ozone derived from free-running simulations of the Whole Atmosphere Community Climate Model (WACCM) and from reanalysis data of the atmospheric service MACC (Monitoring Atmospheric Composition and Climate) which both use a similar stratospheric chemistry module. We find good agreement between WACCM and the MACC reanalysis for the diurnal ozone variation in the high-latitude summer stratosphere based on photochemistry. In addition, we consult the ozone data product of the ERA-Interim reanalysis. The ERA-Interim reanalysis ozone system with its long-term ozone parametrization can not capture these diurnal variations in the upper stratosphere that are due to photochemistry. The good dynamics representations, however, reflects well dynamically induced ozone variations in the lower stratosphere. For the high-latitude winter stratosphere we describe a novel feature of diurnal variation in ozone where changes of up to 46.6% (3.3 ppmv) occur in monthly mean data. For this effect good agreement between the ERA-Interim reanalysis and the MACC reanalysis suggest quite similar diurnal advection processes of ozone. The free-running WACCM model seriously underestimates the role of diurnal advection processes at the polar vortex at the two tested resolutions. The intercomparison of the MACC reanalysis and the ERA-Interim reanalysis demonstrates how global reanalyses can benefit from a chemical representation held by a chemical transport model. The MACC reanalysis provides an unprecedented description of the dynamics and photochemistry of the diurnal variation of stratospheric ozone which is of high interest for ozone trend analysis and research on atmospheric tides. We confirm the diurnal variation in ozone at 5 hPa by observations of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) experiment and selected sites of the Network for Detection of Atmospheric Composition Change (NDACC). The latter give valuable insight even to diurnal variation of ozone in the polar winter stratosphere.
Resumo:
This paper describes sideband response measurements and atmospheric observations with a double sideband and two Single Sideband (SSB) receiver prototypes developed for the multi-beam limb sounder instrument stratosphere-troposphere exchange and climate monitor radiometer. We first show an advanced Fourier-Transform Spectroscopy (FTS) method for sideband response and spurious signal characterization. We then present sideband response measurements of the different prototype receivers and we compare the results of the SSB receivers with sideband measurements by injecting a continuous wave signal into the upper and lower sidebands. The receivers were integrated into a total-power radiometer and atmospheric observations were carried out. The observed spectra were compared to forward model spectra to conclude on the sideband characteristics of the different receivers. The two sideband characterization methods show a high degree of agreement for both SSB receivers with various local oscillator settings. The measured sideband response was used to correct the forward model simulations. This improves the agreement with the atmospheric observations and explains spectral features caused by an unbalanced sideband response. The FTS method also allows to quantify the influence of spurious harmonic responses of the receiver.
Resumo:
Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases׳ abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn׳s atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn׳s bulk elemental and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn׳s upper troposphere may help constraining its bulk O/H ratio. We compare predictions of Jupiter and Saturn׳s bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to most extrasolar systems. In situ measurements of Saturn׳s stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Different mission architectures are envisaged, which would benefit from strong international collaborations, all based on an entry probe that would descend through Saturn׳s stratosphere and troposphere under parachute down to a minimum of 10 bar of atmospheric pressure. We finally discuss the science payload required on a Saturn probe to match the measurement requirements.
Resumo:
The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change). Keeping in mind that the instruments are based on different hardware and calibration setups, a height-dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different data sets, the Microwave Limb Sounder (MLS) on the Aura satellite is used to serve as a kind of traveling standard. A domain-averaging TM (trajectory mapping) method is applied which simplifies the subsequent validation of the quality of the trajectory-mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW) accompanied by the polar vortex breakdown; a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high potential of a network of ground-based remote sensing instruments to synthesize hemispheric maps of water vapor.