55 resultados para Stratigraphic and structural controls
Resumo:
According to the current view, the formation of new alveolar septa from preexisting ones ceases due to the reduction of a double- to a single-layered capillaries network inside the alveolar septa (microvasculature maturation postnatal days 14-21 in rats). We challenged this view by measuring stereologically the appearance of new alveolar septa and by studying the alveolar capillary network in three-dimensional (3-D) visualizations obtained by high-resolution synchrotron radiation X-ray tomographic microscopy. We observed that new septa are formed at least until young adulthood (rats, days 4-60) and that roughly half of the new septa are lifted off of mature septa containing single-layered capillary networks. At the basis of newly forming septa, we detected a local duplication of the capillary network. We conclude that new alveoli may be formed in principle at any time and at any location inside the lung parenchyma and that lung development continues into young adulthood. We define two phases during developmental alveolarization. Phase one (days 4-21), lifting off of new septa from immature preexisting septa, and phase two (day 14 through young adulthood), formation of septa from mature preexisting septa. Clinically, our results ask for precautions using drugs influencing structural lung development during both phases of alveolarization.
Resumo:
BACKGROUND: At a mean follow-up of 3.1 years, twenty-seven consecutive repairs of massive rotator cuff tears yielded good and excellent clinical results despite a retear rate of 37%. Patients with a retear had improvement over the preoperative state, but those with a structurally intact repair had a substantially better result. The purpose of this study was to reassess the same patients to determine the long-term functional and structural results. METHODS: At a mean follow-up interval of 9.9 years, twenty-three of the twenty-seven patients returned for a review and were examined clinically, radiographically, and with magnetic resonance imaging with use of a methodology identical to that used at 3.1 years. RESULTS: Twenty-two of the twenty-three patients remained very satisfied or satisfied with the result. The mean subjective shoulder value was 82% (compared with 80% at 3.1 years). The mean relative Constant score was 85% (compared with 83% at 3.1 years). The retear rate was 57% at 9.9 years (compared with 37% at 3.1 years; p = 0.168). Patients with an intact repair had a better result than those with a failed reconstruction with respect to the mean absolute Constant score (81 compared with 64 points, respectively; p = 0.015), mean relative Constant score (95% and 77%; p = 0.002), and mean strength of abduction (5.5 and 2.6 kg; p = 0.007). The mean retear size had increased from 882 to 1164 mm(2) (p = 0.016). Supraspinatus and infraspinatus muscle fatty infiltration had increased (p = 0.004 and 0.008, respectively). Muscles with torn tendons preoperatively showed more fatty infiltration than muscles with intact tendons preoperatively, regardless of repair integrity. Shoulders with a retear had a significantly higher mean acromion index than those without retear (0.75 and 0.65, respectively; p = 0.004). CONCLUSIONS: Open repair of massive rotator cuff tears yielded clinically durable, excellent results with high patient satisfaction at a mean of almost ten years postoperatively. Conversely, fatty muscle infiltration of the supraspinatus and infraspinatus progressed, and the retear size increased over time. The preoperative integrity of the tendon appeared to be protective against muscle deterioration. A wide lateral extension of the acromion was identified as a previously unknown risk factor for retearing.
Resumo:
The mammalian mitochondrial (mt) genome codes for only 13 proteins, which are essential components in the process of oxidative phosphorylation of ADP into ATP. Synthesis of these proteins relies on a proper mt translation machinery. While 22 tRNAs and 2 rRNAs are also coded by the mt genome, all other factors including the set of aminoacyl-tRNA synthetases (aaRSs) are encoded in the nucleus and imported. Investigation of mammalian mt aminoacylation systems (and mt translation in general) gains more and more interest not only in regard of evolutionary considerations but also with respect to the growing number of diseases linked to mutations in the genes of either mt-tRNAs, synthetases or other factors. Here we report on methodological approaches for biochemical, functional, and structural characterization of human/mammalian mt-tRNAs and aaRSs. Procedures for preparation of native and in vitro transcribed tRNAs are accompanied by recommendations for specific handling of tRNAs incline to structural instability and chemical fragility. Large-scale preparation of mg amounts of highly soluble recombinant synthetases is a prerequisite for structural investigations that requires particular optimizations. Successful examples leading to crystallization of four mt-aaRSs and high-resolution structures are recalled and limitations discussed. Finally, the need for and the state-of-the-art in setting up an in vitro mt translation system are emphasized. Biochemical characterization of a subset of mammalian aminoacylation systems has already revealed a number of unprecedented peculiarities of interest for the study of evolution and forensic research. Further efforts in this field will certainly be rewarded by many exciting discoveries.
Resumo:
A major goal of evolutionary biology is to unravel the molecular genetic mechanisms that underlie functional diversification and adaptation. We investigated how changes in gene regulation and coding sequence contribute to sensory diversification in two replicate radiations of cichlid fishes. In the clear waters of Lake Malawi, differential opsin expression generates diverse visual systems, with sensitivities extending from the ultraviolet to the red regions of the spectrum. These sensitivities fall into three distinct clusters and are correlated with foraging habits. In the turbid waters of Lake Victoria, visual sensitivity is constrained to longer wavelengths, and opsin expression is correlated with ambient light. In addition to regulatory changes, we found that the opsins coding for the shortest-and longest-wavelength visual pigments have elevated numbers of potentially functional substitutions. Thus, we present a model of sensory evolution in which both molecular genetic mechanisms work in concert. Changes in gene expression generate large shifts in visual pigment sensitivity across the collective opsin spectral range, but changes in coding sequence appear to fine-tune visual pigment sensitivity at the short-and long-wavelength ends of this range, where differential opsin expression can no longer extend visual pigment sensitivity.
Resumo:
The calciuric response after an oral calcium load (1000 mg elemental calcium together with a standard breakfast) was studied in 13 healthy male controls and 21 recurrent idiopathic renal calcium stone formers, 12 with hypercalciuria (UCa x V > 7.50 mmol/24 h) and nine with normocalciuria. In controls, serum 1,25(OH)2 vitamin D3 (calcitriol) remained unchanged 6 h after oral calcium load (50.6 +/- 5.1 versus 50.9 +/- 5.0 pg/ml), whereas it tended to increase in hypercalciuric (from 53.6 +/- 3.2 to 60.6 +/- 5.4 pg/ml, P = 0.182) and fell in normocalciuric stone formers (from 45.9 +/- 2.6 to 38.1 +/- 3.3 pg/ml, P = 0.011). The total amount of urinary calcium excreted after OCL was 2.50 +/- 0.20 mmol in controls, 2.27 +/- 0.27 mmol in normocalciuric and 3.62 +/- 0.32 mmol in hypercalciuric stone formers (P = 0.005 versus controls and normocalciuric stone formers respectively); it positively correlated with serum calcitriol 6 h after calcium load (r = 0.392, P = 0.024). Maximum increase in urinary calcium excretion rate, delta Ca-Emax, was inversely related to intact PTH levels in the first 4 h after calcium load, i.e. more pronounced PTH suppression predicted a steeper increase in urinary calcium excretion rate. Twenty-four-hour urine calcium excretion rate was inversely related to the ratio of delta calcitriol/deltaPTHmax after calcium load (r = -0.653, P = 0.0001), indicating that an abnormally up-regulated synthesis of calcitriol and consecutive relative PTH suppression induce hypercalciuria.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
We synthesize existing sedimentary charcoal records to reconstruct Holocene fire history at regional, continental and global scales. The reconstructions are compared with the two potential controls of burning at these broad scales – changes in climate and human activities – to assess their relative importance on trends in biomass burning. Here we consider several hypotheses that have been advanced to explain the Holocene record of fire, including climate, human activities and synergies between the two. Our results suggest that 1) episodes of high fire activity were relatively common in the early Holocene and were consistent with climate changes despite low global temperatures and low levels of biomass burning globally; 2) there is little evidence from the paleofire record to support the Early Anthropocene Hypothesis of human modification of the global carbon cycle; 3) there was a nearly-global increase in fire activity from 3 to 2 ka that is difficult to explain with either climate or humans, but the widespread and synchronous nature of the increase suggests at least a partial climate forcing; and 4) burning during the past century generally decreased but was spatially variable; it declined sharply in many areas, but there were also large increases (e.g., Australia and parts of Europe). Our analysis does not exclude an important role for human activities on global biomass burning during the Holocene, but instead provides evidence for a pervasive influence of climate across multiple spatial and temporal scales.
Resumo:
This article analyses the conditions influencing the commitment of members of sports clubs. It focuses not only on individual characteristics of members, but also on the corresponding structural conditions of sports clubs related to the individual decision to quit or continue their membership. The influences of both the individual and context levels on the commitment of members are estimated in different multi-level models. Results of these multi-level analyses indicate that commitment of members is not just an outcome of individual characteristics such as strong commitment to the club, positively perceived communication and cooperation, satisfaction with sports clubsʼ offers, or voluntary engagement. It is also influenced by club-specific structural conditions: commitment is more probable in rural sports clubs, and clubs who explicitly support sociability, whereas success-oriented sporting goals in clubs have a destabilizing effect.
Resumo:
Urea transporters (UTs) belonging to the solute carrier 14 (SLC14) family comprise two genes with a total of eight isoforms in mammals, UT-A1 to -A6 encoded by SLC14A2 and UT-B1 to -B2 encoded by SLC14A1. Recent efforts have been directed toward understanding the molecular and cellular mechanisms involved in the regulation of UTs using transgenic mouse models and heterologous expression systems, leading to important new insights. Urea uptake by UT-A1 and UT-A3 in the kidney inner medullary collecting duct and by UT-B1 in the descending vasa recta for the countercurrent exchange system are chiefly responsible for medullary urea accumulation in the urinary concentration process. Vasopressin, an antidiuretic hormone, regulates UT-A isoforms via the phosphorylation and trafficking of the glycosylated transporters to the plasma membrane that occurs to maintain equilibrium with the exocytosis and ubiquitin-proteasome degradation pathways. UT-B isoforms are also important in several cellular functions, including urea nitrogen salvaging in the colon, nitric oxide pathway modulation in the hippocampus, and the normal cardiac conduction system. In addition, genomic linkage studies have revealed potential additional roles for SLC14A1 and SLC14A2 in hypertension and bladder carcinogenesis. The precise role of UT-A2 and presence of the urea recycling pathway in normal kidney are issues to be further explored. This review provides an update of these advances and their implications for our current understanding of the SLC14 UTs.
Resumo:
We investigated whether the human growth hormone (HGH) response to catecholamine depletion differs between fully remitted patients with major depressive disorder and healthy control subjects. Fourteen unmedicated subjects with remitted major depressive disorder (RMDD) and 11 healthy control subjects underwent catecholamine depletion with oral α-methylparatyrosine (AMPT) in a randomized, placebo-controlled, double-blind crossover study. The main outcome measure was the serum level of HGH. The diagnosis × drug interaction for HGH serum concentration was significant (F₁,₂₃ = 7.66, P < 0.02). This interaction was attributable to the HGH level increasing after AMPT administration in the RMDD subjects but not in the healthy subjects. In the RMDD sample, the AMPT-induced increase in HGH concentration correlated inversely with AMPT-induced anxiety symptoms as assessed using the Beck Anxiety Inventory (r = -0.63, P < 0.02). There was a trend toward an inverse correlation of the AMPT-induced HGH concentration changes with AMPT-induced depressive symptoms as measured by the BDI (r = -0.53, P = 0.05). Following catecholamine depletion, the RMDD subjects were differentiated from control subjects by their HGH responses. This finding, together with the negative correlation between HGH response and AMPT-induced anxiety symptoms in RMDD subjects, suggests that AMPT administration results in a deeper nadir in central catecholaminergic transmission, as reflected by a greater disinhibition of HGH secretion, in RMDD subjects versus control subjects.
Resumo:
RATIONALE: Thyroid hormones and their interactions with catecholamines play a potentially important role in alterations of mood and cognition. OBJECTIVES: This study aimed to examine the neurobiological effects of catecholamine depletion on thyroid hormones by measuring endocrine and cerebral metabolic function in unmedicated subjects with remitted major depressive disorder (RMDD) and in healthy controls. METHODS: This was a randomized, placebo-controlled, and double-blind crossover trial that included 15 unmedicated RMDD subjects and 13 healthy control subjects. The participants underwent two 3-day-long sessions at 1-week intervals; each participant was randomly administered oral α-methyl-para-tyrosine in one session (catecholamine depletion) and an identical capsule containing hydrous lactose (sham depletion) in the other session prior to a [(18)F]-fluorodeoxyglucose positron emission tomography scan. RESULTS: Serum concentrations of free T3 (FT3), free T4 (FT4), and TSH were obtained and assessed with respect to their relationship to regional cerebral glucose metabolism. Both serum FT3 (P = 0.002) and FT4 (P = 0.0009) levels were less suppressed after catecholamine depletion compared with placebo treatment in the entire study sample. There was a positive association between both FT3 (P = 0.0005) and FT4 (P = 0.002) and depressive symptoms measured using the Montgomery-Åsberg Depression Rating Scale. The relative elevation in FT3 level was correlated with a decrease in regional glucose metabolism in the right dorsolateral prefrontal cortex (rDLPFC; P < 0.05, corrected). CONCLUSIONS: This study provided evidence of an association between a thyroid-catecholamine interaction and mood regulation in the rDLPFC.