22 resultados para Strain rate effect


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective To evaluate the effect of heart rate reduction by ivabradine on coronary collateral function in patients with chronic stable coronary artery disease (CAD). Methods This was a prospective randomised placebo-controlled monocentre trial in a university hospital setting. 46 patients with chronic stable CAD received placebo (n=23) or ivabradine (n=23) for the duration of 6 months. The main outcome measure was collateral flow index (CFI) as obtained during a 1 min coronary artery balloon occlusion at study inclusion (baseline) and at the 6-month follow-up examination. CFI is the ratio between simultaneously recorded mean coronary occlusive pressure divided by mean aortic pressure both subtracted by mean central venous pressure. Results During follow-up, heart rate changed by +0.2±7.8 beats/min in the placebo group, and by –8.1±11.6 beats/min in the ivabradine group (p=0.0089). In the placebo group, CFI decreased from 0.140±0.097 at baseline to 0.109±0.067 at follow-up (p=0.12); it increased from 0.107±0.077 at baseline to 0.152±0.090 at follow-up in the ivabradine group (p=0.0461). The difference in CFI between the 6-month follow-up and baseline examination amounted to −0.031±0.090 in the placebo group and to +0.040±0.094 in the ivabradine group (p=0.0113). Conclusions Heart rate reduction by ivabradine appears to have a positive effect on coronary collateral function in patients with chronic stable CAD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this 6-week prospective, randomized, placebo-controlled and double-blind study, we investigated the effects of a natural herbal remedy based on a recipe from Tibet (Padma® 28), on microvascular endothelial function, heart rate variability and biomarkers of inflammation, clotting and coagulation in 80 coronary artery disease (CAD) patients (age 66 ± 8 years) on guideline-based medication for secondary prevention. We found no significant effects of Padma 28 and conclude that the addition of Padma 28 to guideline-based secondary prevention treatment of CAD did not lead to significant effects on important surrogate markers in elderly male CAD patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Low viscosity domains such as localized shear zones exert an important control on the geodynamics of the uppermost mantle. Grain size reduction and subsequent strain localization related to a switch from dislocation to diffusion creep is one mechanism to form low viscosity domains. To sustain strain localization, the grain size of mantle minerals needs to be kept small over geological timescales. One way to keep olivine grain sizes small is by pinning of mobile grain boundaries during grain growth by other minerals (second phases). Detailed microstructural studies based on natural samples from three shear zones formed at different geodynamic settings, allowed the derivation of the olivine grain-size dependence on the second-phase content. The polymineralic olivine grain-size evolution with increasing strain is similar in the three shear zones. If the second phases are to pin the mobile olivine grain boundary the phases need to be well mixed before grain growth. We suggest that melt-rock and metamorphic reactions are crucial for the initial phase mixing in mantle rocks. With ongoing deformation and increasing strain, grain boundary sliding combined with mass transfer processes and nucleation of grains promotes phase mixing resulting in fine-grained polymineralic mixtures that deform by diffusion creep. Strain localization due to the presence of volumetrically minor minerals in polymineralic mantle rocks is only important at high strain deformation (ultramylonites) at low temperatures (<~800°C). At smaller strain and stress conditions and/or higher temperatures other parameters like overall energy available to deform a given rock volume, the inheritance of mechanical anisotropies or the presence of water or melts needs to be considered to explain strain localization in the upper mantle.