25 resultados para Storage reservoir
Resumo:
BACKGROUND: The quality of platelet concentrates (PCs) is primarily determined in vitro by selective methods (e.g., pH, aggregometry), which provide only limited information on certain platelet (PLT) characteristics. In contrast, proteomic technologies provide a comprehensive overview of the PLT proteome. High interassay variability, however, limits meaningful assessment of samples taken from the same product over time or before and after processing. STUDY DESIGN AND METHODS: Differential in-gel electrophoresis (DIGE) and mass spectrometry were applied to analyze changes in the PLT proteome during storage of PCs. RESULTS: DIGE provides a comprehensive and reproducible overview of the cytoplasmic PLT proteome (median standard deviation of protein spot intensities, 5%-9%). Although 97 percent of cytosolic PLT proteins remained unchanged over a 9-day storage period, septin 2 showed characteristic alterations that preceded by several days more widespread alterations affecting numerous other proteins. Also beta-actin and gelsolin are potential marker proteins for changes in the PLT proteome. Interestingly septin 2 and gelsolin are affected during apoptosis, indicating that apoptosis in PCs may have an impact on PLT storage. CONCLUSION: DIGE is a tool for comprehensively assessing the impact of storage on the global proteome profile of therapeutic PCs. Most of the changes detected are in high-abundance PLT proteins.
Resumo:
The role of platelets as inflammatory cells is demonstrated by the fact that they can release many growth factors and inflammatory mediators, including chemokines, when they are activated. The best known platelet chemokine family members are platelet factor 4 (PF4) and beta-thromboglobulin (beta-TG), which are synthesized in megakaryocytes, stored as preformed proteins in alpha-granules and released from activated platelets. However, platelets also contain many other chemokines such as interleukin-8 (IL-8), growth-regulating oncogene-alpha(GRO-alpha), epithelial neutrophil-activating protein 78 (ENA-78), regulated on activation normal T expressed and secreted (RANTES), macrophage inflammatory protein-1alpha (MIP-1alpha), and monocyte chemotactic protein-3 (MCP-3). They also express chemokine receptors such as CCR4, CXCR4, CCR1 and CCR3. Platelet activation is a feature of many inflammatory diseases such as heparin-induced thrombocytopenia, acquired immunodeficiency syndrome, and congestive heart failure. Substantial amounts of PF4, beta-TG and RANTES are released from platelets on activation, which may occur during storage. Although very few data are available on the in vivo effects of transfused chemokines, it has been suggested that the high incidence of adverse reactions often observed after platelet transfusions may be attributed to the chemokines present in the plasma of stored platelet concentrates.
Resumo:
BACKGROUND: Early exposure of infants and long-term immunity suggest that colonization with Moraxella catarrhalis is more frequent than is determined by routine culture. We characterized a reservoir of M. catarrhalis in pharyngeal lymphoid tissue. METHODS: Tissue from 40 patients (median age, 7.1 years) undergoing elective tonsillectomy and/or adenoidectomy was analyzed for the presence of M. catarrhalis by culture, real-time DNA and RNA polymerase chain reaction (PCR), immunohistochemical analysis (IHC), and fluorescent in situ hybridization (FISH). Histologic sections were double stained for M. catarrhalis and immune cell markers, to characterize the tissue distribution of the organism. Intracellular bacteria were identified using confocal laser scanning microscopy (CLSM). RESULTS: Twenty-nine (91%) of 32 adenoids and 17 (85%) of 20 tonsils were colonized with M. catarrhalis. Detection rates for culture, DNA PCR, RNA PCR, IHC, and FISH were 7 (13%) of 52, 10 (19%) of 52, 21 (41%) of 51, 30 (61%) of 49, and 42 (88%) of 48, respectively (P<.001). Histologic analysis identified M. catarrhalis in crypts, intraepithelially, subepithelially, and (using CLSM) intracellularly. M. catarrhalis colocalized with macrophages and B cells in lymphoid follicles. CONCLUSIONS: Colonization by M. catarrhalis is more frequent than is determined by surface culture, because the organism resides both within and beneath the epithelium and invades host cells.
Resumo:
Bovine papillomaviruses of types 1 and 2 (BPV-1 and -2) chiefly contribute to equine sarcoid pathogenesis. However, the mode of virus transmission and the presence of latent infections are largely unknown. This study established a PCR protocol allowing detection of
Resumo:
PURPOSE: We determined the functional consequences of urinary tract infection in patients with an ileal bladder substitute in terms of urinary continence, post-void residual and urinary retention. MATERIALS AND METHODS: A total of 48 patients with culture documented urinary tract infection (single organism, 10(5) or greater cfu) were retrospectively evaluated before, during and after the infection for changes in continence, post-void residual and urinary retention as well as for resolution of symptomatology after appropriate antibiotic therapy. RESULTS: Of the 48 patients 40 had a single infection while the remaining 8 had multiple urinary tract infection episodes. During daytime 27 of the 44 patients with previously good daytime continence experienced deterioration in their baseline voiding status while infected. Of the 40 patients who were previously continent at night 20 had incontinence while infected. There were 15 patients with documented post-void residual and urinary retention developed in 4 during the urinary tract infection. All patients returned to baseline continence status and reservoir function after appropriate antibiotic treatment based on objective and subjective assessments. CONCLUSIONS: Urinary tract infection may cause urinary incontinence in patients with ileal bladder substitutes. Therefore, when there are complaints of de novo urinary incontinence, a finding of post-void residual or an acute presentation of urinary retention, a urinary tract infection should be excluded. When the urinary tract infection is appropriately treated urinary continence and reservoir function return to their baseline status.