41 resultados para Spiders
Resumo:
Spiders are the most important terrestrial predators among arthropods. Their ecological success is reflected by a high biodiversity and the conquest of nearly every terrestrial habitat. Spiders are closely associated with silk, a material, often seen to be responsible for their great ecological success and gaining high attention in life sciences. However, it is often overlooked that more than half of all Recent spider species have abandoned web building or never developed such an adaptation. These species must have found other, more economic solutions for prey capture and retention, compensating the higher energy costs of increased locomotion activity. Here we show that hairy adhesive pads (scopulae) are closely associated with the convergent evolution of a vagrant life style, resulting in highly diversified lineages of at least, equal importance as the derived web building taxa. Previous studies often highlighted the idea that scopulae have the primary function of assisting locomotion, neglecting the fact that only the distal most pads (claw tufts) are suitable for those purposes. The former observations, that scopulae are used in prey capture, are largely overlooked. Our results suggest the scopulae evolved as a substitute for silk in controlling prey and that the claw tufts are, in most cases, a secondary development. Evolutionary trends towards specialized claw tufts and their composition from a low number of enlarged setae to a dense array of slender ones, as well as the secondary loss of those pads are discussed further. Hypotheses about the origin of the adhesive setae and their diversification throughout evolution are provided.
Resumo:
Literature on bird spider or tarantula bites (Theraphosidae) is rare. This is astonishing as they are coveted pets and interaction with their keepers (feeding, cleaning the terrarium or taking them out to hold) might increase the possibility for bites. Yet, this seems to be a rare event and might be why most theraphosids are considered to be harmless, even though the urticating hairs of many American species can cause disagreeable allergic reactions. We are describing a case of a verified bite by an Indian ornamental tree spider (Poecilotheria regalis), where the patient developed severe, long lasting muscle cramps several hours after the bite. We present a comprehensive review of the literature on bites of these beautiful spiders and conclude that a delayed onset of severe muscle cramps, lasting for days, is characteristic for Poecilotheria bites. We discuss Poecilotheria species as an exception from the general assumption that theraphosid bites are harmless to humans.
Resumo:
Orb-weaving spiders (Araneidae) are commonly regarded as generalist insect predators but resources provided by plants such as pollen may be an important dietary supplementation. Their webs snare insect prey, but can also trap aerial plankton like pollen and fungal spores. When recycling their orb webs, the spiders may therefore also feed on adhering pollen grains or fungal spores via extraoral digestion. In this study we measured stable isotope ratios in the bodies of two araneid species (Aculepeira ceropegia and Araneus diadematus), their potential prey and pollen to determine the relative contribution of pollen to their diet. We found that about 25% of juvenile orb-weaving spiders’ diet consisted of pollen, the other 75% of flying insects, mainly small dipterans and hymenopterans. The pollen grains in our study were too large to be taken up accidentally by the spiders and had first to be digested extraorally by enzymes in an active act of consumption. Therefore, pollen can be seen as a substantial component of the spiders’ diet. This finding suggests that these spiders need to be classified as omnivores rather than pure carnivores.
Resumo:
Spiders, as all other arthropods, have an open circulatory system, and their body fluid, the hemolymph, freely moves between lymphatic vessels and the body cavities (see Wirkner and Huckstorf 2013). The hemolymph can be considered as a multifunctional organ, central for locomotion (Kropf 2013), respiration (Burmester 2013) and nutrition, and it amounts to approximately 20 % of a spider’s body weight. Any injury includes not only immediate hemolymph loss but also pathogen attacks and subsequent infections. Therefore spiders have to react to injuries in a combined manner to stop fluid loss and to defend against microbial invaders. This is achieved by an innate immune system which involves several host defence systems such as hemolymph coagulation and the production of a variety of defensive substances (Fukuzawa et al.2008). In spiders, the immune system is localised in hemocytes which are derived from the myocardium cells of the heart wall where they are produced as prohemocytes and from where they are released as different cell types into the hemolymph (Seitz 1972). They contribute to the defence against pathogens by phagocytosis, nodulation and encapsulation of invaders. The humoral response includes mechanisms which induce melanin production to destroy pathogens, a clotting cascade to stop hemolymph loss and the constitutive production of several types of antimicrobial peptides, which are stored in hemocyte granules and released into the hemolymph (Fukuzawa et al.2008) (Fig.7.1). The immune system of spiders is an innate immune system. It is hemolymph-based and characterised by a broad but not very particular specificity. Its advantage is a fast response within minutes to a few hours. This is in contrast to the adaptive immune system of vertebrates which can react to very specific pathogens, thus resulting in much more specific responses. Moreover, it creates an immunological memory during the lifetime of the species. The disadvantage is that it needs more time to react with antibody production, usually many hours to a few days, and needs to be built up during early ontogenesis.
Resumo:
Whereas research has demonstrated that phobic or fearful individuals overestimate the likelihood of incurring aversive consequences from an encounter with feared stimuli, it has not yet been systematically investigated whether these individuals also overestimate the likelihood (i.e., the frequency) of such encounters. In the current study, spider-fearful and control participants were presented with background information that allowed them to estimate the overall likelihood that different kinds of animals (spiders, snakes, or birds) would be encountered. Spider-fearful participants systematically overestimated the likelihood of encountering a spider with respect to the likelihood of encountering a snake or a bird. No such expectancy bias was observed in control participants. The results thus strengthen our idea that there indeed exist two different types of expectancy bias in high fear and phobia that can be related to different components of the fear response. A conscientious distinction and examination of these two types of expectancy bias are of potential interest for therapeutic applications.
Resumo:
Cupiennius salei single insulin-like growth factor-binding domain protein (SIBD-1), which exhibits an IGFBP N-terminal domain-like profile, was identified in the hemocytes of the spider C. salei. SIBD-1 was purified by RP-HPLC and the sequence determined by a combination of Edman degradation and 5'-3'- RACE PCR. The peptide (8676.08 Da) is composed of 78 amino acids, contains six intrachain disulphide bridges and carries a modified Thr residue at position 2. SIBD-1 mRNA expression was detected by quantitative real-time PCR mainly in hemocytes, but also in the subesophageal nerve mass and muscle. After infection, the SIBD-1 content in the hemocytes decreases and, simultaneously, the temporal SIBD-1 expression seems to be down-regulated. Two further peptides, SIBD-2 and IGFBP-rP1, also exhibiting IGFBP N-terminal domain variants with unknown functions, were identified on cDNA level in spider hemocytes and venom glands. We conclude that SIBD-1 may play an important role in the immune system of spiders.
Resumo:
We study how species richness of arthropods relates to theories concerning net primary productivity, ambient energy, water-energy dynamics and spatial environmental heterogeneity. We use two datasets of arthropod richness with similar spatial extents (Scandinavia to Mediterranean), but contrasting spatial grain (local habitat and country). Samples of ground-dwelling spiders, beetles, bugs and ants were collected from 32 paired habitats at 16 locations across Europe. Species richness of these taxonomic groups was also determined for 25 European countries based on the Fauna Europaea database. We tested effects of net primary productivity (NPP), annual mean temperature (T), annual rainfall (R) and potential evapotranspiration of the coldest month (PETmin) on species richness and turnover. Spatial environmental heterogeneity within countries was considered by including the ranges of NPP, T, R and PETmin. At the local habitat grain, relationships between species richness and environmental variables differed strongly between taxa and trophic groups. However, species turnover across locations was strongly correlated with differences in T. At the country grain, species richness was significantly correlated with environmental variables from all four theories. In particular, species richness within countries increased strongly with spatial heterogeneity in T. The importance of spatial heterogeneity in T for both species turnover across locations and for species richness within countries suggests that the temperature niche is an important determinant of arthropod diversity. We suggest that, unless climatic heterogeneity is constant across sampling units, coarse-grained studies should always account for environmental heterogeneity as a predictor of arthropod species richness, just as studies with variable area of sampling units routinely consider area.
Resumo:
Predicting the behavior of phobic patients in a confrontational situation is challenging. While avoidance as a major clinical component of phobias suggests that patients orient away from threat, findings based on cognitive paradigms indicate an attentional bias towards threat. Here we present eye movement data from 21 spider phobics and 21 control subjects, based on 3 basic oculomotor tasks and a visual exploration task that included close-up views of spiders. Relative to the control group, patients showed accelerated reflexive saccades in one of the basic oculomotor tasks, while the fear-relevant exploration task evoked a general slowing in their scanning behavior and pronounced oculomotor avoidance. However, this avoidance strongly varied within the patient group and was not associated with the scores from spider avoidance-sensitive questionnaire scales. We suggest that variation of oculomotor avoidance between phobics reflects different strategies of how they cope with threat in confrontational situations.
Resumo:
Cognitive-motivational theories of phobias propose that patients' behavior is characterized by a hypervigilance-avoidance pattern. This implies that phobics initially direct their attention towards fear-relevant stimuli, followed by avoidance that is thought to prevent objective evaluation and habituation. However, previous experiments with highly anxious individuals confirmed initial hypervigilance and yet failed to show subsequent avoidance. In the present study, we administered a visual task in spider phobics and controls, requiring participants to search for spiders. Analyzing eye movements during visual exploration allowed the examination of spatial as well as temporal aspects of phobic behavior. Confirming the hypervigilance-avoidance hypothesis as a whole, our results showed that, relative to controls, phobics detected spiders faster, fixated closer to spiders during the initial search phase and fixated further from spiders subsequently.