24 resultados para Speech Recognition Systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Training a system to recognize handwritten words is a task that requires a large amount of data with their correct transcription. However, the creation of such a training set, including the generation of the ground truth, is tedious and costly. One way of reducing the high cost of labeled training data acquisition is to exploit unlabeled data, which can be gathered easily. Making use of both labeled and unlabeled data is known as semi-supervised learning. One of the most general versions of semi-supervised learning is self-training, where a recognizer iteratively retrains itself on its own output on new, unlabeled data. In this paper we propose to apply semi-supervised learning, and in particular self-training, to the problem of cursive, handwritten word recognition. The special focus of the paper is on retraining rules that define what data are actually being used in the retraining phase. In a series of experiments it is shown that the performance of a neural network based recognizer can be significantly improved through the use of unlabeled data and self-training if appropriate retraining rules are applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies investigated the role of featural and configural information when processing facial identity. A lot less is known about their contribution to emotion recognition. In this study, we addressed this issue by inducing either a featural or a configural processing strategy (Experiment 1) and by investigating the attentional strategies in response to emotional expressions (Experiment 2). In Experiment 1, participants identified emotional expressions in faces that were presented in three different versions (intact, blurred, and scrambled) and in two orientations (upright and inverted). Blurred faces contain mainly configural information, and scrambled faces contain mainly featural information. Inversion is known to selectively hinder configural processing. Analyses of the discriminability measure (A′) and response times (RTs) revealed that configural processing plays a more prominent role in expression recognition than featural processing, but their relative contribution varies depending on the emotion. In Experiment 2, we qualified these differences between emotions by investigating the relative importance of specific features by means of eye movements. Participants had to match intact expressions with the emotional cues that preceded the stimulus. The analysis of eye movements confirmed that the recognition of different emotions rely on different types of information. While the mouth is important for the detection of happiness and fear, the eyes are more relevant for anger, fear, and sadness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The practice of information systems (IS) outsourcing is widely established among organizations. Nonetheless, evidence suggests that organizations differ considerably in the extent to which they deploy IS outsourcing. This variation has motivated research into the determinants of the IS outsourcing decision. Most of this research is based on the assumption that a decision on the outsourcing of a particular IS function is made independently of other IS functions. This modular view ignores the systemic nature of the IS function, which posits that IS effectiveness depends on how the various IS functions work together effectively. This study proposes that systemic influences are important criteria in evaluating the outsourcing option. It further proposes that the recognition of systemic influences in outsourcing decisions is culturally sensitive. Specifically, we provide evidence that systemic effects are factored into the IS outsourcing decision differently in more individualist cultures than in collectivist ones. Our results of a survey of United States and German firms indicate that perceived in-house advantages in the systemic impact of an IS function are, indeed, a significant determinant of IS outsourcing in a moderately individualist country (i.e., Germany), whereas insignificant in a strongly individualist country (i.e., the United States). The country differences are even stronger with regard to perceived in-house advantages in the systemic view of IS professionals. In fact, the direction of this impact is reversed in the United States sample. Other IS outsourcing determinants that were included as controls, such as cost efficiency, did not show significant country differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a solution to the problem of action and gesture recognition using sparse representations. The dictionary is modelled as a simple concatenation of features computed for each action or gesture class from the training data, and test data is classified by finding sparse representation of the test video features over this dictionary. Our method does not impose any explicit training procedure on the dictionary. We experiment our model with two kinds of features, by projecting (i) Gait Energy Images (GEIs) and (ii) Motion-descriptors, to a lower dimension using Random projection. Experiments have shown 100% recognition rate on standard datasets and are compared to the results obtained with widely used SVM classifier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activities of daily living (ADL) are important for quality of life. They are indicators of cognitive health status and their assessment is a measure of independence in everyday living. ADL are difficult to reliably assess using questionnaires due to self-reporting biases. Various sensor-based (wearable, in-home, intrusive) systems have been proposed to successfully recognize and quantify ADL without relying on self-reporting. New classifiers required to classify sensor data are on the rise. We propose two ad-hoc classifiers that are based only on non-intrusive sensor data. METHODS: A wireless sensor system with ten sensor boxes was installed in the home of ten healthy subjects to collect ambient data over a duration of 20 consecutive days. A handheld protocol device and a paper logbook were also provided to the subjects. Eight ADL were selected for recognition. We developed two ad-hoc ADL classifiers, namely the rule based forward chaining inference engine (RBI) classifier and the circadian activity rhythm (CAR) classifier. The RBI classifier finds facts in data and matches them against the rules. The CAR classifier works within a framework to automatically rate routine activities to detect regular repeating patterns of behavior. For comparison, two state-of-the-art [Naïves Bayes (NB), Random Forest (RF)] classifiers have also been used. All classifiers were validated with the collected data sets for classification and recognition of the eight specific ADL. RESULTS: Out of a total of 1,373 ADL, the RBI classifier correctly determined 1,264, while missing 109 and the CAR determined 1,305 while missing 68 ADL. The RBI and CAR classifier recognized activities with an average sensitivity of 91.27 and 94.36%, respectively, outperforming both RF and NB. CONCLUSIONS: The performance of the classifiers varied significantly and shows that the classifier plays an important role in ADL recognition. Both RBI and CAR classifier performed better than existing state-of-the-art (NB, RF) on all ADL. Of the two ad-hoc classifiers, the CAR classifier was more accurate and is likely to be better suited than the RBI for distinguishing and recognizing complex ADL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diet management is a key factor for the prevention and treatment of diet-related chronic diseases. Computer vision systems aim to provide automated food intake assessment using meal images. We propose a method for the recognition of already segmented food items in meal images. The method uses a 6-layer deep convolutional neural network to classify food image patches. For each food item, overlapping patches are extracted and classified and the class with the majority of votes is assigned to it. Experiments on a manually annotated dataset with 573 food items justified the choice of the involved components and proved the effectiveness of the proposed system yielding an overall accuracy of 84.9%.