19 resultados para Specific density
Resumo:
Numerical models of the intervertebral disc, which address mechanical questions commonly make use of the difference in water content between annulus and nucleus, and thus fluid and solid parts are separated. Despite this simplification, models remain complex due to the anisotropy and nonlinearity of the annulus and regional variations of the collagen fibre density. Additionally, it has been shown that cross-links make a large contribution to the stiffness of the annulus. Because of this complex composite structure, it is difficult to reproduce several sets of experimental data with one single set of material parameters. This study addresses the question to which extent the ultrastructure of the intervertebral disc should be modelled so that its moment-angle behaviour can be adequately described. Therefore, a hyperelastic constitutive law, based on continuum mechanical principles was derived, which does not only consider the anisotropy from the collagen fibres, but also interactions among the fibres and between the fibres and the ground substance. Eight ovine lumbar intervertebral discs were tested on a custom made spinal loading simulator in flexion/extension, lateral bending and axial rotation. Specimen-specific geometrical models were generated using CT images and T2 maps to distinguish between annulus fibrosus and nucleus pulposus. For the identification of the material parameters the annulus fibrosus was described with two scenarios: with and without fibre-matrix and fibre-fibre interactions. Both scenarios showed a similar behaviour on a load displacement level. Comparing model predictions to the experimental data, the mean RMS of all specimens and all load cases was 0.54±0.15° without the interaction and 0.54±0.19° when the fibre-matrix and fibre-fibre interactions were included. However, due to the increased stiffness when cross-links effects were included, this scenario showed more physiological stress-strain relations in uniaxial and biaxial stress states. Thus, the present study suggests that fibre-matrix and fibre-fibre interactions should be considered in the constitutive law when the model addresses questions concerning the stress field of the annulus fibrosus.
Resumo:
Availability of voltage-gated calcium channels (Cav) at the plasma membrane is paramount to maintaining the calcium homeostasis of the cell. It is proposed that the ubiquitylation/de-ubiquitylation balance regulates the density of ion channels at the cell surface. Voltage-gated calcium channels Cav1.2 have been found to be ubiquitylated under basal conditions both in vitro and in vivo. In a previous study, we have shown that Cav1.2 channels are ubiquitylated by neuronal precursor cell-expressed developmentally downregulated 4 (Nedd4-1) ubiquitin ligases, but the identity of the counterpart de-ubiquitylating enzyme remained to be elucidated. Regarding sodium and potassium channels, it has been reported that the action of the related isoform Nedd4-2 is counteracted by the ubiquitin-specific protease (USP) 2-45. In this study, we show that USP 2-45 also de-ubiquitylates Cav channels. We co-expressed USPs and Cav1.2 channels together with the accessory subunits β2 and α2δ-1, in tsA-201 and HEK-293 mammalian cell lines. Using whole-cell current recordings and surface biotinylation assays, we show that USP2-45 specifically decreases both the amplitude of Cav currents and the amount of Cav1.2 subunits inserted at the plasma membrane. Importantly, co-expression of the α2δ-1 accessory subunit is necessary to support the effect of USP2-45. We further show that USP2-45 promotes the de-ubiquitylation of both Cav1.2 and α2δ-1 subunits. Remarkably, α2δ-1, but not Cav1.2 nor β2, co-precipitated with USP2-45. These results suggest that USP2-45 binding to α2δ-1 promotes the de-ubiquitylation of both Cav1.2 and α2δ-1 subunits, in order to regulate the expression of Cav1.2 channels at the plasma membrane.
Resumo:
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores.
Resumo:
OBJECTIVES Hypothetically the atherogenic effect of the metabolic syndrome may be mediated through the increased occurrence of small LDL-particles which are easily modified to atherogenic oxidized LDL (ox-LDL). The aim of this study was to test this concept by examining the association between circulating ox-LDL, LDL-particle size, and the metabolic syndrome. DESIGN AND RESULTS A population-based sample of clinically healthy 58-year-old men (n = 391) was recruited. Ox-LDL was measured by ELISA (specific monoclonal antibody, mAb-4E6) and LDL-particle size by gradient gel electrophoresis. The results showed that ox-LDL significantly correlated to factors constituting the metabolic syndrome; triglycerides (r = 0.43), plasma insulin (r = 0.20), body mass index (r = 0.20), waist-to-hip ratio (r = 0.21) and HDL (r = -0.24); (P < 0.001). Ox-LDL correlated also to LDL-particle size (r = -0.42), Apo-B (r = 0.70), LDL (r = 0.65); (P < 0.001) and, furthermore, with Apo A-1 (r = -0.13) and heart rate (r = 0.13); (P < 0.01). CONCLUSION The metabolic syndrome was accompanied by high plasma ox-LDL concentrations compared with those without the syndrome. Ox-LDL levels were associated with most of the risk factors constituting the metabolic syndrome and was, in addition related to small LDL-particle size. To our knowledge the present study is the first one to demonstrate that circulating ox-LDL levels are associated with small LDL-particle size in a population representative sample of clinically healthy middle-aged men. The high degree of intercorrelation amongst several factors makes it difficult to clarify the independent role of any specific factor.