27 resultados para Spatial Research


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Key performance features of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations of the chemical composition of planetary surfaces are presented. This mass spectrometer is well suited for elemental and isotopic analysis of raw solid materials with high sensitivity and high spatial resolution. In this study, ultraviolet laser radiation with irradiances suitable for ablation (< 1 GW/cm2) is used to achieve stable ion formation and low sample consumption. In comparison to our previous laser ablation studies at infrared wavelengths, several improvements to the experimental setup have been made, which allow accurate control over the experimental conditions and good reproducibility of measurements. Current performance evaluations indicate significant improvements to several instrumental figures of merit. Calibration of the mass scale is performed within a mass accuracy (Δm/m) in the range of 100 ppm, and a typical mass resolution (m/Δm) ~600 is achieved at the lead mass peaks. At lower laser irradiances, the mass resolution is better, about (m/Δm) ~900 for lead, and limited by the laser pulse duration of 3 ns. The effective dynamic range of the instrument was enhanced from about 6 decades determined in previous study up to more than 8 decades at present. Current studies show high sensitivity in detection of both metallic and non-metallic elements. Their abundance down to tens of ppb can be measured together with their isotopic patterns. Due to strict control of the experimental parameters, e.g. laser characteristics, ion-optical parameters and sample position, by computer control, measurements can be performed with high reproducibility. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of the AEgIS experiment at CERN is to test the weak equivalence principle for antimatter. We will measure the Earth ' s gravitational acceleration g with antihydrogen atoms being launched in a horizontal vacuum tube and traversing a moiré de fl ectometer. We intend to use a position sensitive device made of nuclear emulsions (combined with a time-of- fl ight detector such as silicon μ strips) to measure precisely their annihilation points at the end of the tube. The goal is to determine g with a 1% relative accuracy. In 2012 we tested emulsion fi lms in vacuum and at room temperature with low energy antiprotons from the CERN antiproton decelerator. First results on the expected performance for AEgIS are presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to bridge interdisciplinary differences in Presence research and to establish connections between Presence and “older” concepts of psychology and communication, a theoretical model of the formation of Spatial Presence is proposed. It is applicable to the exposure to different media and intended to unify the existing efforts to develop a theory of Presence. The model includes assumptions about attention allocation, mental models, and involvement, and considers the role of media factors and user characteristics as well, thus incorporating much previous work. It is argued that a commonly accepted model of Spatial Presence is the only solution to secure further progress within the international, interdisciplinary and multiple-paradigm community of Presence research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A growing number of studies in humans demonstrate the involvement of vestibular information in tasks that are seemingly remote from well-known functions such as space constancy or postural control. In this review article we point out three emerging streams of research highlighting the importance of vestibular input: (1) Spatial Cognition: Modulation of vestibular signals can induce specific changes in spatial cognitive tasks like mental imagery and the processing of numbers. This has been shown in studies manipulating body orientation (changing the input from the otoliths), body rotation (changing the input from the semicircular canals), in clinical findings with vestibular patients, and in studies carried out in microgravity. There is also an effect in the reverse direction; top-down processes can affect perception of vestibular stimuli. (2) Body Representation: Numerous studies demonstrate that vestibular stimulation changes the representation of body parts, and sensitivity to tactile input or pain. Thus, the vestibular system plays an integral role in multisensory coordination of body representation. (3) Affective Processes and Disorders: Studies in psychiatric patients and patients with a vestibular disorder report a high comorbidity of vestibular dysfunctions and psychiatric symptoms. Recent studies investigated the beneficial effect of vestibular stimulation on psychiatric disorders, and how vestibular input can change mood and affect. These three emerging streams of research in vestibular science are—at least in part—associated with different neuronal core mechanisms. Spatial transformations draw on parietal areas, body representation is associated with somatosensory areas, and affective processes involve insular and cingulate cortices, all of which receive vestibular input. Even though a wide range of different vestibular cortical projection areas has been ascertained, their functionality still is scarcely understood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the current challenges in evolutionary ecology is understanding the long-term persistence of contemporary-evolving predator–prey interactions across space and time. To address this, we developed an extension of a multi-locus, multi-trait eco-evolutionary individual-based model that incorporates several interacting species in explicit landscapes. We simulated eco-evolutionary dynamics of multiple species food webs with different degrees of connectance across soil-moisture islands. A broad set of parameter combinations led to the local extinction of species, but some species persisted, and this was associated with (1) high connectance and omnivory and (2) ongoing evolution, due to multi-trait genetic variability of the embedded species. Furthermore, persistence was highest at intermediate island distances, likely because of a balance between predation-induced extinction (strongest at short island distances) and the coupling of island diversity by top predators, which by travelling among islands exert global top-down control of biodiversity. In the simulations with high genetic variation, we also found widespread trait evolutionary changes indicative of eco-evolutionary dynamics. We discuss how the ever-increasing computing power and high-resolution data availability will soon allow researchers to start bridging the in vivo–in silico gap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the influence of spatial-numerical associations in number categorization tasks has been well established, their role in mental arithmetic is less clear. It has been hypothesized that mental addition leads to rightward and upward shifts of spatial attention (along the “mental number line”), whereas subtraction leads to leftward and downward shifts. We addressed this hypothesis by analyzing spontaneous eye movements during mental arithmetic. Participants solved verbally presented arithmetic problems (e.g., 2 + 7, 8–3) aloud while looking at a blank screen. We found that eye movements reflected spatial biases in the ongoing mental operation: Gaze position shifted more upward when participants solved addition compared to subtraction problems, and the horizontal gaze position was partly determined by the magnitude of the operands. Interestingly, the difference between addition and subtraction trials was driven by the operator (plus vs. minus) but was not influenced by the computational process. Thus, our results do not support the idea of a mental movement toward the solution during arithmetic but indicate a semantic association between operation and space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial-numerical associations (small numbers-left/lower space and large numbers-right/upper space) are regularly found in simple number categorization tasks. These associations were taken as evidence for a spatially oriented mental number line. However, the role of spatial-numerical associations during more complex number processing, such as counting or mental arithmetic is less clear. Here, we investigated whether counting is associated with a movement along the mental number line. Participants counted aloud upward or downward in steps of 3 for 45 s while looking at a blank screen. Gaze position during upward counting shifted rightward and upward, while the pattern for downward counting was less clear. Our results, therefore, confirm the hypothesis of a movement along the mental number line for addition. We conclude that space is not only used to represent number magnitudes but also to actively operate on numbers in more complex tasks such as counting, and that the eyes reflect this spatial mental operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patterns of size inequality in crowded plant populations are often taken to be indicative of the degree of size asymmetry of competition, but recent research suggests that some of the patterns attributed to size‐asymmetric competition could be due to spatial structure. To investigate the theoretical relationships between plant density, spatial pattern, and competitive size asymmetry in determining size variation in crowded plant populations, we developed a spatially explicit, individual‐based plant competition model based on overlapping zones of influence. The zone of influence of each plant is modeled as a circle, growing in two dimensions, and is allometrically related to plant biomass. The area of the circle represents resources potentially available to the plant, and plants compete for resources in areas in which they overlap. The size asymmetry of competition is reflected in the rules for dividing up the overlapping areas. Theoretical plant populations were grown in random and in perfectly uniform spatial patterns at four densities under size‐asymmetric and size‐symmetric competition. Both spatial pattern and size asymmetry contributed to size variation, but their relative importance varied greatly over density and over time. Early in stand development, spatial pattern was more important than the symmetry of competition in determining the degree of size variation within the population, but after plants grew and competition intensified, the size asymmetry of competition became a much more important source of size variation. Size variability was slightly higher at higher densities when competition was symmetric and plants were distributed nonuniformly in space. In a uniform spatial pattern, size variation increased with density only when competition was size asymmetric. Our results suggest that when competition is size asymmetric and intense, it will be more important in generating size variation than is local variation in density. Our results and the available data are consistent with the hypothesis that high levels of size inequality commonly observed within crowded plant populations are largely due to size‐asymmetric competition, not to variation in local density.