141 resultados para Somatolactin hormone
Resumo:
Recombinant human growth hormone (rhGH) therapy is used in the long-term treatment of children with growth disorders, but there is considerable treatment response variability. The exon 3-deleted growth hormone receptor polymorphism (GHR(d3)) may account for some of this variability. The authors performed a systematic review (to April 2011), including investigator-only data, to quantify the effects of the GHR(fl-d3) and GHR(d3-d3) genotypes on rhGH therapy response and used a recently established Bayesian inheritance model-free approach to meta-analyze the data. The primary outcome was the 1-year change-in-height standard-deviation score for the 2 genotypes. Eighteen data sets from 12 studies (1,527 children) were included. After several prior assumptions were tested, the most appropriate inheritance model was codominant (posterior probability = 0.93). Compared with noncarriers, carriers had median differences in 1-year change-in-height standard-deviation score of 0.09 (95% credible interval (CrI): 0.01, 0.17) for GHR(fl-d3) and of 0.14 (95% CrI: 0.02, 0.26) for GHR(d3-d3). However, the between-study standard deviation of 0.18 (95% CrI: 0.10, 0.33) was considerable. The authors tested by meta-regression for potential modifiers and found no substantial influence. They conclude that 1) the GHR(d3) polymorphism inheritance is codominant, contrasting with previous reports; 2) GHR(d3) genotypes account for modest increases in rhGH effects in children; and 3) considerable unexplained variability in responsiveness remains.
Resumo:
Regulation of human androgen biosynthesis is poorly understood. However, detailed knowledge is needed to eventually solve disorders with androgen dysbalance. We showed that starvation growth conditions shift steroidogenesis of human adrenal NCI-H295R cells towards androgen production attributable to decreased HSD3B2 expression and activity and increased CYP17A1 phosphorylation and 17,20-lyase activity. Generally, starvation induces stress and energy deprivation that need to be counteracted to maintain proper cell functions. AMP-activated protein kinase (AMPK) is a master energy sensor that regulates cellular energy balance. AMPK regulates steroidogenesis in the gonad. Therefore, we investigated whether AMPK is also a regulator of adrenal steroidogenesis. We hypothesized that starvation uses AMPK signaling to enhance androgen production in NCI-H295R cells. We found that AMPK subunits are expressed in NCI-H295 cells, normal adrenal tissue and human as well as pig ovary cells. Starvation growth conditions decreased phosphorylation, but not activity of AMPK in NCI-H295 cells. In contrast, the AMPK activator 5-aminoimidazole-4-carboxamide (AICAR) increased AMPKα phosphorylation and increased CYP17A1-17,20 lyase activity. Compound C (an AMPK inhibitor), directly inhibited CYP17A1 activities and can therefore not be used for AMPK signaling studies in steroidogenesis. HSD3B2 activity was neither altered by AICAR nor compound C. Starvation did not affect mitochondrial respiratory chain function in NCI-H295R cells suggesting that there is no indirect energy effect on AMPK through this avenue. In summary, starvation-mediated increase of androgen production in NCI-H295 cells does not seem to be mediated by AMPK signaling. But AMPK activation can enhance androgen production through a specific increase in CYP17A1-17,20 lyase activity.
Resumo:
The Breast International Group (BIG) 1-98 study is a four-arm trial comparing 5 years of monotherapy with tamoxifen or with letrozole or with sequences of 2 years of one followed by 3 years of the other for postmenopausal women with endocrine-responsive early invasive breast cancer. From 1998 to 2003, BIG -98 enrolled 8,010 women. The enhanced design f the trial enabled two complementary analyses of efficacy and safety. Collection of tumor specimens further enabled treatment comparisons based on tumor biology. Reports of BIG 1-98 should be interpreted in relation to each individual patient as she weighs the costs and benefits of available treatments.
Resumo:
A number of mathematical models for predicting growth and final height outcome have been proposed to enable the clinician to 'individualize' growth-promoting treatment. However, despite optimizing these models, many patients with isolated growth hormone deficiency (IGHD) do not reach their target height. The aim of this study was to analyse the impact of polymorphic genotypes [CA repeat promoter polymorphism of insulin-like growth factor-I (IGF-I) and the -202 A/C promoter polymorphism of IGF-Binding Protein-3 (IGFBP-3)] on variable growth factors as well as final height in severe IGHD following GH treatment. DESIGN, PATIENTS AND CONTROLS: One hundred seventy eight (IGF-I) and 167 (IGFBP-3) subjects with severe growth retardation because of IGHD were studied. In addition, the various genotypes were also studied in a healthy control group of 211 subjects.
Resumo:
Many metabolic hormones, growth hormone (GH), insulin-like growth factor-I (IGF-I) and insulin affect ovarian functions. However, whether ovarian steroid hormones affect metabolic hormones in cattle remains unknown. This study aimed to determine the effect of sex steroids on the plasma profiles of GH, IGF-I and insulin and their receptors in the liver and adipose tissues of dairy cows. Ovariectomized cows (n = 14) were randomly divided into four groups: control group (n = 3) was treated with saline on Day 0; oestradiol (E2) group (n = 3), with saline and 1 mg oestradiol benzoate (EB) on Day 0 and 5, respectively; progesterone (P4) group (n = 4) with two CIDRs (Pfizer Inc., Tokyo, Japan) from Day 0; and E2 + P4 group (n = 4) with two CIDRs on Day 0 that were removed on Day 6 and were immediately injected with 1 mg EB. The animals were euthanized after the experiment, and liver and adipose tissues samples were quantitatively analysed using real-time PCR for the expression of mRNA for the GH (GHR), IGF-I (IGFR-I) and insulin (IR) receptor mRNAs. Oestradiol benzoate significantly increased the number of peaks (p < 0.05), pulse amplitude (p < 0.05) and area under the curve (AUC; p < 0.01) for plasma GH; moreover, it increased plasma IGF-I concentration (p < 0.05), but it had no effect on the plasma insulin profile. P4 significantly decreased the AUC (p < 0.01), compared with the control group, whereas it did not affect the number of peaks and the amplitude of GH pulses. P4 + E2 did not affect the GH pulse profile. E2 increased the mRNA expression of GHR, IGFR-I and IR in the liver (p < 0.05), whereas both P4 and E2 + P4 did not change their expressions. Our results provide evidence that the metabolic and reproductive endocrine axes may regulate each other to ensure optimal reproductive and metabolic function.
Resumo:
Long-term hormone therapy alone is standard care for metastatic or high-risk, non-metastatic prostate cancer. STAMPEDE--an international, open-label, randomised controlled trial--uses a novel multiarm, multistage design to assess whether the early additional use of one or two drugs (docetaxel, zoledronic acid, celecoxib, zoledronic acid and docetaxel, or zoledronic acid and celecoxib) improves survival in men starting first-line, long-term hormone therapy. Here, we report the preplanned, second intermediate analysis comparing hormone therapy plus celecoxib (arm D) with hormone therapy alone (control arm A).
Resumo:
After an average of 18-36 months under androgen suppression therapy by surgical castration, LHRH, and steroidal or non-steroidal antiandrogens, almost all patients with metastatic prostate cancer show PSA progression as a sign of androgen-independent but still androgen-sensitive tumor growth. Our understanding and the treatment of such castration-resistant prostate cancer has changed markedly. The introduction of new drugs like abiraterone and MDV3100 has shown that prostate cancer progression even in the"hormone-refractory" stage is driven by androgen receptor signaling. Based on this information the question of whether androgen deprivation therapy in castration-resistant prostate cancer should be continued or not is still of relevance. This review gives a critical overview of the literature and current guideline recommendations.
Resumo:
In girls and adolescents with Turner syndrome (TS), is there a correlation between serum AMH levels and karyotype, spontaneous puberty and other biochemical markers of ovarian function, or growth hormone (GH) therapy? SUMMARY ANSWER: Serum anti-Müllerian hormone (AMH) correlates with karyotype, pubertal development, LH, FSH and are measurable in a higher percentage of TS patients under GH therapy. WHAT IS KNOWN ALREADY: Most girls with TS suffer from incomplete sexual development, premature ovarian failure and infertility due to abnormal ovarian folliculogenesis. Serum AMH levels reflect the ovarian reserve in females, even in childhood. STUDY DESIGN, SIZE, DURATION: Cross-sectional study investigating 270 karyotype proven TS patients aged 0-20 years between 2009 and 2010. PARTICIPANTS/MATERIALS, SETTINGS, METHODS: Studies were conducted at three University Children's hospitals in Europe. Main outcome measures were clinical data concerning pubertal development as well as laboratory data including karyotype, serum AMH, LH, FSH, estradiol (E2), inhibin B and IGF. RESULTS AND THE ROLE OF CHANCE: Serum AMH was detectable in 21.9% of all TS girls and correlated strongly with karyotypes. A measurable serum AMH was found in 77% of TS girls with karyotype 45,X/46,XX, in 25% with 'other' karyotypes and in only 10% of 45,X TS girls. A strong relationship was also observed for measurable serum AMH and signs of spontaneous puberty such as breast development [adjusted odds ratio (OR) 19.3; 95% CI 2.1-175.6; P = 0.009] and menarche (crude OR 47.6; 95% CI 4.8-472.9; P = 0.001). Serum AMH correlated negatively with FSH and LH, but did not correlate with E2 and inhibin B. GH therapy increased the odds of having measurable AMH in TS (adjusted OR 4.1; 95% CI 1.9-8.8; P < 0.001). LIMITATIONS, REASONS FOR CAUTION: The cross-sectional design of the study does not allow longitudinal interpretation of the data; for that further studies are needed. High percentage of non-measurable AMH levels in the cohort of TS require categorized analysis. WIDER IMPLICATIONS OF THE FINDINGS: Serum AMH levels are a useful marker of the follicle pool and thus ovarian function in pediatric patients with TS. These findings are in line with the published literature. The finding that GH therapy may affect AMH levels is novel, but must be confirmed by future longitudinal studies.
Resumo:
To study whether the ovarian reserve in female lymphoma patients is already reduced before the start of chemotherapy.
Resumo:
Isolated growth hormone deficiency type-2 (IGHD-2), the autosomal-dominant form of GH deficiency, is mainly caused by specific splicing mutations in the human growth hormone (hGH) gene (GH-1). These mutations, occurring in and around exon 3, cause complete exon 3 skipping and produce a dominant-negative 17.5 kD GH isoform that reduces the accumulation and secretion of wild type-GH (wt-GH). At present, patients suffering from IGHD-2 are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent toxic effects of the 17.5-kD mutant on the pituitary gland, which can eventually lead to other hormonal deficiencies. Considering a well-known correlation between the clinical severity observed in IGHD-2 patients and the increased expression of the 17.5-kD isoform, therapies that specifically target this isoform may be useful in patients with GH-1 splicing defects. This chapter focuses on molecular strategies that could represent future directions for IGHD-2 treatment.
Resumo:
Endocrine and neuroendocrine cells differ from cells which rapidly release all their secreted proteins in that they store some secretory proteins in concentrated forms in secretory granules to be rapidly released when cells are stimulated. Protein aggregation is considered as the first step in the secretory granule biosynthesis and, at least in the case of prolactin and growth hormone, greatly depends on zinc ions that facilitate this process. Hence, regulation of cellular zinc transport especially that within the regulated secretory pathway is of importance to understand. Various zinc transporters of Slc30a/ZnT and Slc39a/Zip families have been reported to fulfil this role and to participate in fine tuning of zinc transport in and out of the endoplasmic reticulum, Golgi complex and secretory granules, the main cellular compartments of the regulated secretory pathway. In this review, we will focus on the role of zinc in the formation of hormone-containing secretory granules with special emphasis on conditions required for growth hormone dimerization/aggregation. In addition, we highlight the role of zinc transporters that govern the process of zinc homeostasis in the regulated hormone secretion.
Towards optimal treatment with growth hormone in short children and adolescents: evidence and theses
Resumo:
Treatment with growth hormone (GH) has become standard practice for replacement in GH-deficient children or pharmacotherapy in a variety of disorders with short stature. However, even today, the reported adult heights achieved often remain below the normal range. In addition, the treatment is expensive and may be associated with long-term risks. Thus, a discussion of the factors relevant for achieving an optimal individual outcome in terms of growth, costs, and risks is required. In the present review, the heterogenous approaches of treatment with GH are discussed, considering the parameters available for an evaluation of the short- and long-term outcomes at different stages of treatment. This discourse introduces the potential of the newly emerging prediction algorithms in comparison to other more conventional approaches for the planning and evaluation of the response to GH. In rare disorders such as those with short stature, treatment decisions cannot easily be deduced from personal experience. An interactive approach utilizing the derived experience from large cohorts for the evaluation of the individual patient and the required decision-making may facilitate the use of GH. Such an approach should also lead to avoiding unnecessary long-term treatment in unresponsive individuals.