57 resultados para Soil Conservation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proceedings of the 9th International Conference of the International Soil conservation Organisation (ISCO-9), from 26-30 August 1996 in Bonn, Germany

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Efficient planning of soil conservation measures requires, first, to understand the impact of soil erosion on soil fertility with regard to local land cover classes; and second, to identify hot spots of soil erosion and bright spots of soil conservation in a spatially explicit manner. Soil organic carbon (SOC) is an important indicator of soil fertility. The aim of this study was to conduct a spatial assessment of erosion and its impact on SOC for specific land cover classes. Input data consisted of extensive ground truth, a digital elevation model and Landsat 7 imagery from two different seasons. Soil spectral reflectance readings were taken from soil samples in the laboratory and calibrated with results of SOC chemical analysis using regression tree modelling. The resulting model statistics for soil degradation assessments are promising (R2=0.71, RMSEV=0.32). Since the area includes rugged terrain and small agricultural plots, the decision tree models allowed mapping of land cover classes, soil erosion incidence and SOC content classes at an acceptable level of accuracy for preliminary studies. The various datasets were linked in the hot-bright spot matrix, which was developed to combine soil erosion incidence information and SOC content levels (for uniform land cover classes) in a scatter plot. The quarters of the plot show different stages of degradation, from well conserved land to hot spots of soil degradation. The approach helps to gain a better understanding of the impact of soil erosion on soil fertility and to identify hot and bright spots in a spatially explicit manner. The results show distinctly lower SOC content levels on large parts of the test areas, where annual crop cultivation was dominant in the 1990s and where cultivation has now been abandoned. On the other hand, there are strong indications that afforestations and fruit orchards established in the 1980s have been successful in conserving soil resources.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Within the scope of a comprehensive assessment of the degree of soil erosion in Switzerland, common methods have been used in the past including test plot measurements, artificial rainfall simulation, and erosion modelling. In addition, mapping guidelines for all visible erosion features have been developed since the 1970s and are being successfully applied in many research and soil conservation projects. Erosion damage has been continuously mapped over a period of 9 years in a test region in the central Bernese plateau. In 2005, two additional study areas were added. The present paper assesses the data gathered and provides a comparison of the three study areas within a period of one year (from October 2005 to October 2006), focusing on the on-site impacts of soil erosion. During this period, about 11 erosive rainfall events occurred. Average soil loss rates mapped at each study site amounted to 0.7 t ha-1, 1.2 t ha-1 and 2.3 t ha-1, respectively. About one fourth of the total arable land showed visible erosion damage. Maximum soil losses of about 70 t ha-1 occurred on individual farm plots. Average soil erosion patterns are widely used to underline the severity of an erosion problem (e.g. impacts on water bodies). But since severe rainfall events, wheel tracks, headlands, and other “singularities” often cause high erosion rates, analysis of extreme erosion patterns such as maximum values led to a more differentiated understanding and appropriate conclusions for planning and design of soil protection measures. The study contains an assessment of soil erosion in Switzerland, emphasizing questions about extent, frequency and severity. At the same time, the effects of different types of land management are investigated in the field, aiming at the development of meaningful impact indicators of (un-)sustainable agriculture/soil erosion risk as well as the validation of erosion models. The results illustrate that conservation agriculture including no-till, strip tillage and in-mulch seeding plays an essential role in reducing soil loss as compared to conventional tillage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data on rainfall, runoff and sediment loss from different land use types have been collected by the Soil Conservation Research Programme in seven small catchments (73-673 hectares) throughout the Ethiopian Highlands since the early 1980s. Monitoring was carried out on a storm-to-storm basis for extended periods of 10-20 years, and the data are analysed here to assess long-term effects of changes. Soil and water conservation technologies were introduced in the early years in the catchments in view of their capacity to reduce runoff and sediment yield. Results indicate that rainfall did not substantially change over the observation periods. Land use changes and land degradation, however, altered runoff, as shown by the data from small test plots (30 m2), which were not altered by conservation measures during the monitoring periods. Sediment delivery from the catchments may have decreased due to soil and water conservation, while runoff rates did not change significantly. Extrapolation of the results in the highlands, however, showed that expansion of cultivated and grazing land induced by population growth may have increased the overall surface runoff. Watershed management in the catchments, finally, had beneficial effects on ecosystem services by reducing soil erosion, restoring soil fertility, enhancing agricultural production, and maintaining overall runoff to the benefit of lowland areas and neighbouring countries.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Besides its primary role in producing food and fiber, agriculture also has relevant effects on several other functions, such as management of renewable natural resources. Climate change (CC) may lead to new trade-offs between agricultural functions or aggravate existing ones, but suitable agricultural management may maintain or even improve the ability of agroecosystems to supply these functions. Hence, it is necessary to identify relevant drivers (e.g., cropping practices, local conditions) and their interactions, and how they affect agricultural functions in a changing climate. The goal of this study was to use a modeling framework to analyze the sensitivity of indicators of three important agricultural functions, namely crop yield (food and fiber production function), soil erosion (soil conservation function), and nutrient leaching (clean water provision function), to a wide range of agricultural practices for current and future climate conditions. In a two-step approach, cropping practices that explain high proportions of variance of the different indicators were first identified by an analysis of variance-based sensitivity analysis. Then, most suitable combinations of practices to achieve best performance with respect to each indicator were extracted, and trade-offs were analyzed. The procedure was applied to a region in western Switzerland, considering two different soil types to test the importance of local environmental constraints. Results show that the sensitivity of crop yield and soil erosion due to management is high, while nutrient leaching mostly depends on soil type. We found that the influence of most agricultural practices does not change significantly with CC; only irrigation becomes more relevant as a consequence of decreasing summer rainfall. Trade-offs were identified when focusing on best performances of each indicator separately, and these were amplified under CC. For adaptation to CC in the selected study region, conservation soil management and the use of cropped grasslands appear to be the most suitable options to avoid trade-offs.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A study was conducted on the highlands of Ethiopia to identify and analyse the factors determining the adoption of environmental management measures. In 1985, Ethiopia was classified into low –and high-potential areas based on the suitability of the natural environment for rain-fed agriculture. To address these objectives, case study areas were selected from low-potential and high-potential areas randomly. Data were collected through face-to-face interview and key informants, focus group discussion and field observation. In the low-potential areas, the physical environment ‒ particularly soil and forest environments have shown substantial recovery. Similarly, the water environment has improved. However, in the high-potential areas sampled, these resources are still being degraded. Clear understanding of the benefits of soil conservation structures by farmers, active involvement and technical support from the government and full and genuine participation of farmers in communal environmental resources management activities were found to be main factors in the adoption of environmental management measures.