26 resultados para Soil C Content


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dermatophilus-like bacteria were observed in histological examinations of samples of diseased foot skin from greater flamingos (Phoenicopterus roseus) living in zoological gardens in Switzerland. When grown on TSA-SB containing polymyxin B, the bacteria isolated from these skin samples formed hyphae, as is typical for Dermatophilus congolensis, but these bacteria were non-haemolytic. The closest relatives based on 16S rRNA gene sequences were the two members of the genus Arsenicicoccus, Arsenicicoccus bolidensis and Arsenicicoccus piscis. A representative of the isolated strains shared 34.3 % DNA-DNA relatedness with the type strain of A. bolidensis, 32.3 % with the type strain of A. piscis and 34.5 % with the type strain of D. congolensis, demonstrating that these strains do not belong to any of these species. The phenotypic characteristics differed from those of members of the genus Arsenicicoccus as well as from those of D. congolensis. The G+C content of strain KM 894/11(T) was 71.6 mol%. The most abundant fatty acids were iso-C15 : 0, summed feature 3 (including C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω9c. MK-8(H4) was the predominant menaquinone. Cell-wall structure analysis revealed that the peptidoglycan type was A3γ ll-Dpm-Gly (type A41.1). Based on genotypic and chemotaxonomic characteristics, the isolated strains represent a novel species within the genus Arsenicicoccus, for which the name Arsenicicoccus dermatophilus sp. nov. is proposed. The type strain is KM 894/11(T) ( = DSM 25571(T) = CCUG 62181(T) = CCOS 690(T)), and strain KM 1/12 ( = DSM 25572 = CCUG 62182 = CCOS 691) is a reference strain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A model is developed to describe transport and loss of methyl bromide (MeBr) in soil following application as a soil fumigant. The model is used to investigate the effect of soil and management factors on MeBr volatilization. Factors studied include depth of injection, soil water content, presence or absence of tarp, depth to downward barrier, and irrigation after injection. Of these factors, the most important was irrigation after injection followed by covering with the tarp, which increased the diffusive resistance of the soil and prevented early loss of MeBr. The model offers an explanation for the apparently contradictory observations of earlier field studies of MeBr volatilization from soils under different conditions. The model was also used to calculate the concentration-time index for various management alternatives, showing that the irrigation application did not make the surface soil more difficult to fumigate, except at very early times. Therefore, irrigation shows promise for reducing fumigant loss while at the same time permitting control of target organisms during fumigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of northern high-latitude peatlands played an important role in the carbon (C) balance of the land biosphere since the Last Glacial Maximum (LGM). At present, carbon storage in northern peatlands is substantial and estimated to be 500 ± 100 Pg C (1 Pg C = 1015 g C). Here, we develop and apply a peatland module embedded in a dynamic global vegetation and land surface process model (LPX-Bern 1.0). The peatland module features a dynamic nitrogen cycle, a dynamic C transfer between peatland acrotelm (upper oxic layer) and catotelm (deep anoxic layer), hydrology- and temperature-dependent respiration rates, and peatland specific plant functional types. Nitrogen limitation down-regulates average modern net primary productivity over peatlands by about half. Decadal acrotelm-to-catotelm C fluxes vary between −20 and +50 g C m−2 yr−1 over the Holocene. Key model parameters are calibrated with reconstructed peat accumulation rates from peat-core data. The model reproduces the major features of the peat core data and of the observation-based modern circumpolar soil carbon distribution. Results from a set of simulations for possible evolutions of northern peat development and areal extent show that soil C stocks in modern peatlands increased by 365–550 Pg C since the LGM, of which 175–272 Pg C accumulated between 11 and 5 kyr BP. Furthermore, our simulations suggest a persistent C sequestration rate of 35–50 Pg C per 1000 yr in present-day peatlands under current climate conditions, and that this C sink could either sustain or turn towards a source by 2100 AD depending on climate trajectories as projected for different representative greenhouse gas concentration pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Contagious caprine pleuropneumonia (CCPP) caused by Mycoplasma capricolum subsp. capripneumoniae is a severe epidemic affecting mainly domestic Caprinae species but also affects wild Caprinae species. M. capricolum subsp. capripneumoniae belongs to the "Mycoplasma mycoides cluster." The disease features prominently in East Africa, in particular Kenya, Tanzania, and Ethiopia. CCPP also endangers wildlife and thus affects not only basic nutritional resources of large populations but also expensively built-up game resorts in affected countries. Here, we report the complete sequences of two M. capricolum subsp. capripneumoniae strains: the type strain F38 and strain ILRI181 isolated druing a recent outbreak in Kenya. Both genomes have a G+C content of 24% with sizes of 1,016,760 bp and 1,017,183 bp for strains F38 and ILRI181, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since European settlement, there has been a dramatic increase in the density, cover and distribution of woody plants in former grassland and open woodland. There is a widespread belief that shrub encroachment is synonymous with declines in ecosystem functions, and often it is associated with landscape degradation or desertification. Indeed, this decline in ecosystem functioning is considered to be driven largely by the presence of the shrubs themselves. This prevailing paradigm has been the basis for an extensive program of shrub removal, based on the view that it is necessary to reinstate the original open woodland or grassland structure from which shrublands are thought to have been derived. We review existing scientific evidence, particularly focussed on eastern Australia, to question the notion that shrub encroachment leads to declines in ecosystem functions. We then summarise this scientific evidence into two conceptual models aimed at optimising landscape management to maximise the services provided by shrub-encroached areas. The first model seeks to reconcile the apparent conflicts between the patch- and landscape-level effects of shrubs. The second model identifies the ecosystem services derived from different stages of shrub encroachment. We also examined six ecosystem services provided by shrublands (biodiversity, soil C, hydrology, nutrient provision, grass growth and soil fertility) by using published and unpublished data. We demonstrated the following: (1) shrub effects on ecosystems are strongly scale-, species- and environment-dependent and, therefore, no standardised management should be applied to every case; (2) overgrazing dampens the generally positive effect of shrubs, leading to the misleading relationship between encroachment and degradation; (3) woody encroachment per se does not hinder any of the functions or services described above, rather it enhances many of them; (4) no single shrub-encroachment state (including grasslands without shrubs) will maximise all services; rather, the provision of ecosystem goods and services by shrublands requires a mixture of different states; and (5) there has been little rigorous assessment of the long-term effectiveness of removal and no evidence that this improves land condition in most cases. Our review provides the basis for an improved, scientifically based understanding and management of shrublands, so as to balance the competing goals of providing functional habitats, maintaining soil processes and sustaining pastoral livelihoods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A polyphasic taxonomic analysis was carried out on 11 uncommon Gram-stain-negative, non-motile, catalase- and oxidase-positive, but indole-negative, bacterial strains isolated from tortoises. Phenotypically and genetically they represented a homogeneous group of organisms most closely related to, but distinct from, Uruburuella suis. In a reconstructed 16S rRNA gene tree they clustered on a monophyletic branch next to U. suis with gene similarities between strains of 99.5-100%, and of up to 98.2% with U. suis . DNA-DNA hybridization indicated the organisms represented a novel species with only 40% DNA-DNA similarity with U. suis . Partial sequencing of rpoB resulted in two subclusters confirming the 16S rRNA gene phylogeny; both genes allowed clear separation and identification of the novel species. Furthermore, they could be unambiguously identified by matrix-assisted laser desorption ionization time-of-flight MS, where, again, they formed a highly homogeneous cluster separate from U. suis and other members of the family Neisseriaceae . The major fatty acids were C(16 : 0) and summed feature C(16 : 1)ω7c/iso-C(15 : 0) 2-OH. The DNA G+C content was 54.4 mol%. Based on phenotypic and genetic data we propose classifying these organisms as representatives of a novel species named Uruburuella testudinis sp. nov. The type strain is 07_OD624(T) ( = DSM 26510(T) = CCUG 63373(T)).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plants attacked by leaf herbivores release volatile organic compounds (VOCs) both locally from the wounded site and systemically from non-attacked tissues. These volatiles serve as attractants for predators and parasitoids. This phenomenon is well described for plant leaves, but systemic induction of VOCs in the roots has remained unstudied. We assessed the spatial and temporal activation of the synthesis and release of (E)-β-caryophyllene (EβC) in maize roots upon feeding by larvae of Diabrotica virgifera virgifera, as well as the importance of systemically produced EβC for the attraction of the entomopathogenic nematode Heterorhabditis megidis. The production of EβC was found to be significantly stronger at the site of attack than in non-attacked tissues. A weak, but significant, increase in transcriptional activity of the EβC synthase gene tps23 and a corresponding increase in EβC content were observed in the roots above the feeding site and in adjacent roots, demonstrating for the first time that herbivory triggers systemic production of a volatile within root systems. In belowground olfactometers, the nematodes were significantly more attracted towards local feeding sites than systemically induced roots. The possible advantages and disadvantages of systemic volatile signalling in roots are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Theoretical models predict lognormal species abundance distributions (SADs) in stable and productive environments, with log-series SADs in less stable, dispersal driven communities. We studied patterns of relative species abundances of perennial vascular plants in global dryland communities to: (i) assess the influence of climatic and soil characteristics on the observed SADs, (ii) infer how environmental variability influences relative abundances, and (iii) evaluate how colonisation dynamics and environmental filters shape abundance distributions. We fitted lognormal and log-series SADs to 91 sites containing at least 15 species of perennial vascular plants. The dependence of species relative abundances on soil and climate variables was assessed using general linear models. Irrespective of habitat type and latitude, the majority of the SADs (70.3%) were best described by a lognormal distribution. Lognormal SADs were associated with low annual precipitation, higher aridity, high soil carbon content, and higher variability of climate variables and soil nitrate. Our results do not corroborate models predicting the prevalence of log-series SADs in dryland communities. As lognormal SADs were particularly associated with sites with drier conditions and a higher environmental variability, we reject models linking lognormality to environmental stability and high productivity conditions. Instead our results point to the prevalence of lognormal SADs in heterogeneous environments, allowing for more evenly distributed plant communities, or in stressful ecosystems, which are generally shaped by strong habitat filters and limited colonisation. This suggests that drylands may be resilient to environmental changes because the many species with intermediate relative abundances could take over ecosystem functioning if the environment becomes suboptimal for dominant species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High ³⁷Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of ³⁷Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict ³⁷Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating ³⁷Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for ³⁷Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural ³⁷Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of ³⁷Ar activity concentrations. The influence of soil water content on ³⁷Ar production is shown to be negligible to first order, while ³⁷Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the delta N-15 and delta C-13 isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Delta delta N-15 (delta N-15 plant - delta N-15 soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in delta C-13 in hay and delta C-13 in both soil and hay between management types, but showed that delta C-13 abundances were significantly lower in soil of organic compared to conventional grasslands. delta C-15 values implied that management types did not substantially differ in nitrogen cycling. Only delta C-13 in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice.