19 resultados para Small-signal stability
Resumo:
Histone RNA 3' end formation occurs through a specific cleavage reaction that requires, among other things, base-pairing interactions between a conserved spacer element in the pre-mRNA and the minor U7 snRNA present as U7 snRNP. An oligonucleotide complementary to the first 16 nucleotides of U7 RNA can be used to characterize U7 snRNPs from nuclear extracts by native gel electrophoresis. Using similar native gel techniques, we present direct biochemical evidence for a stable association between histone pre-mRNA and U7 snRNPs. Other complexes formed in the nuclear extract are dependent on the 5' cap structure and on the conserved hairpin element of histone pre-mRNA, respectively. However, in contrast to the U7-specific complex, their formation is not required for processing. Comparison of several authentic and mutant histone pre-mRNAs with different spacer sequences demonstrates that the formation and stability of the U7-specific complex closely follows the predicted stability of the potential RNA-RNA hybrid. However, this does not exclude a stabilization of the complex by U7 snRNP structural proteins.
Resumo:
Conspecific effects of neighbours on small-tree survival may have a role in tree population dynamics and community composition of tropical forests. This notion was tested with data from two 4-ha plots in lowland forest at Danum, Sabah (Borneo), for a 21-year interval (censuses at 1986, 1996, 2001, 2007). Species with ≥45 focal trees 10 to <100 cm stem girth per plot in 1986 were selected. Logistic regressions fitted mean focal tree size and mean inverse-distance-weighted basal area abundance of neighbours (within 20 m), for the periods over which each focus tree was alive. Coefficients of variation of neighbourhood basal area abundance, both spatially and temporally, quantified the changing environment of each focus tree. Fits were critically and individually evaluated, with corrections for spatial autocorrelation. Conspecific effects at Danum was generally very weak or non-existent: species’ mortality rates varied also across plots. The main reasons appear to be that (1) species were not dense enough to interact despite frequent although weak spatial aggregation, and their neighbourhoods were highly differing in species composition; and (2) these neighbourhoods were highly variable temporally, meaning that focus trees experienced stochastically fluctuating neighbourhood environments. Only one species, Dimorphocalyx muricatus, showed strong conspecific effects (varying between plots) which can be explained by its distinct ecology. This understorey species is highly aggregated on ridges and is drought-tolerant. That this functionally and habitat-specialized species, has implied intraspecific density-dependent feedback in its dynamics is a remarkable indication of the overall processes maintaining stability of the Danum forest.
Resumo:
Characterization of spatial and temporal variation in grassland productivity and nutrition is crucial for a comprehensive understanding of ecosystem function. Although within-site heterogeneity in soil and plant properties has been shown to be relevant for plant community stability, spatiotemporal variability in these factors is still understudied in temperate grasslands. Our study aimed to detect if soil characteristics and plant diversity could explain observed small-scale spatial and temporal variability in grassland productivity, biomass nutrient concentrations, and nutrient limitation. Therefore, we sampled 360 plots of 20 cm × 20 cm each at six consecutive dates in an unfertilized grassland in Southern Germany. Nutrient limitation was estimated using nutrient ratios in plant biomass. Absolute values of, and spatial variability in, productivity, biomass nutrient concentrations, and nutrient limitation were strongly associated with sampling date. In April, spatial heterogeneity was high and most plots showed phosphorous deficiency, while later in the season nitrogen was the major limiting nutrient. Additionally, a small significant positive association between plant diversity and biomass phosphorus concentrations was observed, but should be tested in more detail. We discuss how low biological activity e.g., of soil microbial organisms might have influenced observed heterogeneity of plant nutrition in early spring in combination with reduced active acquisition of soil resources by plants. These early-season conditions are particularly relevant for future studies as they differ substantially from more thoroughly studied later season conditions. Our study underlines the importance of considering small spatial scales and temporal variability to better elucidate mechanisms of ecosystem functioning and plant community assembly.
Resumo:
The suitability of Portland cement blends for encapsulation of Cs-Ionsiv in a monolithic wasteform was investigated. No evidence of reaction or dissolution of the Cs-Ionsiv in the cementitious environment was found by scanning electron microscopy and X-ray diffraction. However, a small fraction (≤1.6 wt%) of the Cs inventory was released from the encapsulated Ionsiv during leaching experiments carried out on hydrated samples. Cs release was enhanced by exchange of K and Na present in the cementitious pore water. Cement systems lower in K and Na, such as slag based blends, showed lower Cs release than the fly ash based analogues. © 2010 Materials Research Society.