27 resultados para Sinolingularia gen. nov


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation was based on 23 isolates from several European countries collected over the past 30 years, and included characterization of all isolates. Published data on amplified fragment length polymorphism typing of isolates representing all biovars as well as protein profiles were used to select strains that were then further characterized by polyamine profiling and sequencing of 16S rRNA, infB, rpoB and recN genes. Comparison of 16S rRNA gene sequences revealed a monophyletic group within the avian 16S rRNA group of the Pasteurellaceae, which currently includes the genera Avibacterium, Gallibacterium and Volucribacter. Five monophyletic subgroups related to Gallibacterium anatis were recognized by 16S rRNA, rpoB, infB and recN gene sequence comparisons. Whole-genome similarity between strains of the five subgroups and the type strain of G. anatis calculated from recN sequences allowed us to classify them within the genus Gallibacterium. In addition, phenotypic data including biochemical traits, protein profiling and polyamine patterns clearly indicated that these taxa are related. Major phenotypic diversity was observed for 16S rRNA gene sequence groups. Furthermore, comparison of whole-genome similarities, phenotypic data and published data on amplified fragment length polymorphism and protein profiling revealed that each of the five groups present unique properties that allow the proposal of three novel species of Gallibacterium, for which we propose the names Gallibacterium melopsittaci sp. nov. (type strain F450(T) =CCUG 36331(T) =CCM 7538(T)), Gallibacterium trehalosifermentans sp. nov. (type strain 52/S3/90(T) =CCUG 55631(T) =CCM 7539(T)) and Gallibacterium salpingitidis sp. nov. (type strain F150(T) =CCUG 15564(T) =CCUG 36325(T) =NCTC 11414(T)), a novel genomospecies 3 of Gallibacterium and an unnamed taxon (group V). An emended description of the genus Gallibacterium is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mycoplasma mycoides cluster consists of six pathogenic mycoplasmas causing disease in ruminants, which share many genotypic and phenotypic traits. The M. mycoides cluster comprises five recognized taxa: Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC), M. mycoides subsp. mycoides Large Colony (MmmLC), M. mycoides subsp. capri (Mmc), Mycoplasma capricolum subsp. capricolum (Mcc) and M. capricolum subsp. capripneumoniae (Mccp). The group of strains known as Mycoplasma sp. bovine group 7 of Leach (MBG7) has remained unassigned, due to conflicting data obtained by different classification methods. In the present paper, all available data, including recent phylogenetic analyses, have been reviewed, resulting in a proposal for an emended taxonomy of this cluster: (i) the MBG7 strains, although related phylogenetically to M. capricolum, hold sufficient characteristic traits to be assigned as a separate species, i.e. Mycoplasma leachii sp. nov. (type strain, PG50(T) = N29(T) = NCTC 10133(T) = DSM 21131(T)); (ii) MmmLC and Mmc, which can only be distinguished by serological methods and are related more distantly to MmmSC, should be combined into a single subspecies, i.e. Mycoplasma mycoides subsp. capri, leaving M. mycoides subsp. mycoides (MmmSC) as the exclusive designation for the agent of contagious bovine pleuropneumonia. A taxonomic description of M. leachii sp. nov. and emended descriptions of M. mycoides subsp. mycoides and M. mycoides subsp. capri are presented. As a result of these emendments, the M. mycoides cluster will hereafter be composed of five taxa comprising three subclusters, which correspond to the M. mycoides subspecies, the M. capricolum subspecies and the novel species M. leachii.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gram-negative, aerobic, motile, rod-shaped bacteria were isolated from the intestines of freshwater fish on two separate occasions. Colonies of both strains, JF3835(T) and JF4413, produced non-diffusible green pigment following 4-5 days incubation on Luria-Bertani agar. The most abundant fatty acids were summed feature 3 (comprising C(16 : 1)ω7c and/or C(15 : 0) iso 2-OH), C(16 : 0) and C(18 : 1)ω7c. The DNA G+C content was 62.9 mol%. Sequence analysis of the 16S rRNA gene indicated 100 % sequence similarity between the two strains. In comparison with recognized species, the new strains exhibited the greatest degree of sequence similarity with members of the Pseudomonas chlororaphis subspecies: P. chlororaphis subsp. chlororaphis (99.84 %), P. chlororaphis subsp. aurantiaca (99.75 %) and P. chlororaphis subsp. aureofaciens (99.40 %). While DNA-DNA relatedness confirmed the placement of strains JF3835(T) and JF4413 as members of the species P. chlororaphis, multilocus sequencing indicated that the strains formed a distinct cluster within it. On the basis of genotypic and phenotypic evidence, strains JF3835(T) and JF4413 represent a novel subspecies of the species P. chlororaphis, for which the name Pseudomonas chlororaphis subsp. piscium subsp. nov. is proposed. The type strain is JF3835(T) (=NCIMB 14478(T)=DSM 21509(T)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the “Mycoplasma mycoides cluster” represent important livestock pathogens worldwide. We report the genome sequence of Mycoplasma feriruminatoris sp. nov., the closest relative to the “Mycoplasma mycoides cluster” and the fastest-growing Mycoplasma species described to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dermatophilus-like bacteria were observed in histological examinations of samples of diseased foot skin from greater flamingos (Phoenicopterus roseus) living in zoological gardens in Switzerland. When grown on TSA-SB containing polymyxin B, the bacteria isolated from these skin samples formed hyphae, as is typical for Dermatophilus congolensis, but these bacteria were non-haemolytic. The closest relatives based on 16S rRNA gene sequences were the two members of the genus Arsenicicoccus, Arsenicicoccus bolidensis and Arsenicicoccus piscis. A representative of the isolated strains shared 34.3 % DNA-DNA relatedness with the type strain of A. bolidensis, 32.3 % with the type strain of A. piscis and 34.5 % with the type strain of D. congolensis, demonstrating that these strains do not belong to any of these species. The phenotypic characteristics differed from those of members of the genus Arsenicicoccus as well as from those of D. congolensis. The G+C content of strain KM 894/11(T) was 71.6 mol%. The most abundant fatty acids were iso-C15 : 0, summed feature 3 (including C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω9c. MK-8(H4) was the predominant menaquinone. Cell-wall structure analysis revealed that the peptidoglycan type was A3γ ll-Dpm-Gly (type A41.1). Based on genotypic and chemotaxonomic characteristics, the isolated strains represent a novel species within the genus Arsenicicoccus, for which the name Arsenicicoccus dermatophilus sp. nov. is proposed. The type strain is KM 894/11(T) ( = DSM 25571(T) = CCUG 62181(T) = CCOS 690(T)), and strain KM 1/12 ( = DSM 25572 = CCUG 62182 = CCOS 691) is a reference strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five Mycoplasma strains from wild Caprinae were analyzed: four from Alpine ibex (Capra ibex) which died at the Berlin Zoo between 1993 and 1994, one from a Rocky Mountain goat collected in the USA prior to 1987. These five strains represented a population different from the populations belonging to the 'Mycoplasma mycoides cluster' as tested using multi locus sequence typing, Matrix-assisted laser desorption/ionization time of flight mass spectrometry analysis and DNA-DNA hybridization. Analysis of the 16S rRNA gene (rrs), genomic sequence based in silico as well as laboratory DNA-DNA hybridization, and the analysis of phenotypic traits in particular their exceptionally rapid growth all confirmed that they do not belong to any Mycoplasma species described to date. We therefore suggest these strains represent a novel species, for which we propose the name Mycoplasma feriruminatoris sp. nov. The type strain is G5847(T) (=DSM 26019(T)=NCTC 1362(T)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polyphasic taxonomic analysis was carried out on 11 uncommon Gram-stain-negative, non-motile, catalase- and oxidase-positive, but indole-negative, bacterial strains isolated from tortoises. Phenotypically and genetically they represented a homogeneous group of organisms most closely related to, but distinct from, Uruburuella suis. In a reconstructed 16S rRNA gene tree they clustered on a monophyletic branch next to U. suis with gene similarities between strains of 99.5-100%, and of up to 98.2% with U. suis . DNA-DNA hybridization indicated the organisms represented a novel species with only 40% DNA-DNA similarity with U. suis . Partial sequencing of rpoB resulted in two subclusters confirming the 16S rRNA gene phylogeny; both genes allowed clear separation and identification of the novel species. Furthermore, they could be unambiguously identified by matrix-assisted laser desorption ionization time-of-flight MS, where, again, they formed a highly homogeneous cluster separate from U. suis and other members of the family Neisseriaceae . The major fatty acids were C(16 : 0) and summed feature C(16 : 1)ω7c/iso-C(15 : 0) 2-OH. The DNA G+C content was 54.4 mol%. Based on phenotypic and genetic data we propose classifying these organisms as representatives of a novel species named Uruburuella testudinis sp. nov. The type strain is 07_OD624(T) ( = DSM 26510(T) = CCUG 63373(T)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five isolates of non-pigmented, rapidly growing mycobacteria were isolated from three patients and,in an earlier study, from zebrafish. Phenotypic and molecular tests confirmed that these isolates belong to the Mycobacterium chelonae-Mycobacterium abscessus group, but they could not be confidently assigned to any known species of this group. Phenotypic analysis and biochemical tests were not helpful for distinguishing these isolates from other members of the M. chelonae–M.abscessus group. The isolates presented higher drug resistance in comparison with other members of the group, showing susceptibility only to clarithromycin. The five isolates showed a unique PCR restriction analysis pattern of the hsp65 gene, 100 % similarity in 16S rRNA gene and hsp65 sequences and 1-2 nt differences in rpoB and internal transcribed spacer (ITS) sequences.Phylogenetic analysis of a concatenated dataset including 16S rRNA gene, hsp65, and rpoB sequences from type strains of more closely related species placed the five isolates together, as a distinct lineage from previously described species, suggesting a sister relationship to a group consisting of M. chelonae, Mycobacterium salmoniphilum, Mycobacterium franklinii and Mycobacterium immunogenum. DNA–DNA hybridization values .70 % confirmed that the five isolates belong to the same species, while values ,70 % between one of the isolates and the type strains of M. chelonae and M. abscessus confirmed that the isolates belong to a distinct species. The polyphasic characterization of these isolates, supported by DNA–DNA hybridization results,demonstrated that they share characteristics with M. chelonae–M. abscessus members, butconstitute a different species, for which the name Mycobacterium saopaulense sp. nov. is proposed. The type strain is EPM10906T (5CCUG 66554T5LMG 28586T5INCQS 0733T).