20 resultados para Single pulse waveform
Resumo:
In progressive immunoglobulin A nephropathy (IgAN), intravenous immunoglobulin (IVIg) treatment has been used to delay disease progression, but the long-term efficacy is largely unknown. We report the clinical outcomes after IVIg therapy in six male patients with progressive IgAN [median glomerular filtration rate (GFR) 31 ml/min per 1.73 m(2)] followed for a median observation period of 8 years. In this single-arm, non-randomized study, IVIg was given monthly at a dose of 2 g/kg body weight for 6 months. The course of renal function was assessed by linear regression analysis of GFR and proteinuria, and was compared to eight patients with IgAN (median GFR 29 ml/min per 1.73 m(2)) without IVIg as a contemporaneous control group. IgAN disease progression was delayed after IVIg therapy on average for 3 years. The mean loss of renal function decreased from -1.05 ml/min per month to -0.15 ml/min per month (P = 0.024) and proteinuria decreased from 2.4 g/l to 1.0 g/l (P = 0.015). The primary end-point (GFR < 10 ml/min or relapse) occurred 5.2 years (median; range 0.4-8.8) after the first IVIg pulse, and after 1.3 years (median; range 0.8-2.4) in the control group (P = 0.043). In Kaplan-Meier analysis, the median renal survival time with IVIg was prolonged by 3.5 years (IVIg 4.7 years versus control 1.2 years; P = 0.006). IVIg pulse therapy may be considered as a treatment option to reduce the loss of renal function and improve proteinuria in patients with progressive IgAN.
Resumo:
Objective. The information derived from central venous catheters is underused. We developed an EKG-R synchronization and averaging system to obtained distinct CVP waveforms and analyzed components of these. Methods. Twenty-five paralyzed surgical patients undergoing CVP monitoring under mechanical ventilation were studied. CVP and EKG signals were analyzed employing our system, the mean CVP and CVP at end-diastole during expiration were compared, and CVP waveform components were measured using this system. Results. CVP waveforms were clearly visualized in all patients. They showed the a peak to be 1.8+/- 0.7 mmHg, which was the highest of three peaks, and the x trough to be lower than the y trough (-1.6+/- 0.7mmHgand-0.9+/- 0.5mmHg, respectively), withameanpulsepressureof3.4mmHg.ThedifferencebetweenthemeanCVPandCVPatend-diastoleduringexpirationwas0.58+/- 0.81 mmHg. Conclusions. The mean CVP can be used as an index of right ventricular preload in patients under mechanical ventilation with regular sinus rhythm. Our newly developed system is useful for clinical monitoring and for education in circulatory physiology.
Resumo:
The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.
Resumo:
Single gold particles may serve as room temperature single electron memory units because of their size dependent electronic level spacing. Here, we present a proof-of-concept study by electrochemically controlled scanning probe experiments performed on tailor-made Au particles of narrow dispersity. In particular, the charge transport characteristics through chemically synthesized hexane-1-thiol and 4-pyridylbenzene-1-thiol mixed monolayer protected Au144 clusters (MPCs) by differential pulse voltammetry (DPV) and electrochemical scanning tunneling spectroscopy (EC-STS) are reported. The pyridyl groups exposed by the Au-MPCs enable their immobilization on Pt(111) substrates. By varying the humidity during their deposition, samples coated by stacks of compact monolayers of Au-MPCs or decorated with individual, laterally separated Au-MPCs are obtained. DPV experiments with stacked monolayers of Au144-MPCs and EC-STS experiments with laterally separated individual Au144-MPCs are performed both in aqueous and ionic liquid electrolytes. Lower capacitance values were observed for individual clusters compared to ensemble clusters. This trend remains the same irrespective of the composition of the electrolyte surrounding the Au144-MPC. However, the resolution of the energy level spacing of the single clusters is strongly affected by the proximity of neighboring particles.
Resumo:
PURPOSE To reliably determine the amplitude of the transmit radiofrequency ( B1+) field in moving organs like the liver and heart, where most current techniques are usually not feasible. METHODS B1+ field measurement based on the Bloch-Siegert shift induced by a pair of Fermi pulses in a double-triggered modified Point RESolved Spectroscopy (PRESS) sequence with motion-compensated crusher gradients has been developed. Performance of the sequence was tested in moving phantoms and in muscle, liver, and heart of six healthy volunteers each, using different arrangements of transmit/receive coils. RESULTS B1+ determination in a moving phantom was almost independent of type and amplitude of the motion and agreed well with theory. In vivo, repeated measurements led to very small coefficients of variance (CV) if the amplitude of the Fermi pulse was chosen above an appropriate level (CV in muscle 0.6%, liver 1.6%, heart 2.3% with moderate amplitude of the Fermi pulses and 1.2% with stronger Fermi pulses). CONCLUSION The proposed sequence shows a very robust determination of B1+ in a single voxel even under challenging conditions (transmission with a surface coil or measurements in the heart without breath-hold). Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.