66 resultados para Simulated Environmental-change
Resumo:
Prior to ca. 14,660 yr BP, during the early Late-glacial (Oldest Dryas), larval assemblages of Chironomidae (Insecta: Diptera) in Gerzensee, Switzerland, were dominated by cold stenothermic taxa as well as by taxa typical of subalpine lakes today. This was the coldest period of the entire sequence. After ca. 14,660 yr BP, in the Late Glacial Interstadial (Bølling–Allerød), a temperature increase is recorded by a sharp rise in the oxygen-isotope ratio in lake marl and by an increase in the organic-matter content of the sediments. Changes in the chironomid fauna then are consistent with rising temperatures. This warming trend is interrupted between 14,070 and 13,940 yr BP, coinciding with the GI-1d cold oscillation, but the change in the chironomid assemblage is more consistent with a response to increasing lake depth and density of aquatic macrophytes than falling temperature. A rise in cold-adapted chironomid taxa between 13,840 and 13,710 yr BP suggests that summer air temperatures may have declined. Changes in the chironomid assemblage after 13,710 yr BP suggest a decline in submerged macrophytes coupled with a rise in lake productivity and summer temperature, although the latter is not reflected in the oxygen-isotope record. This suggests that there may have been increasing seasonality during this period when summer temperatures were rising, driven by rising summer insolation, and winters becoming cooler, which is largely reflected in the oxygen-isotope record. A decline in thermophilic chironomids and a rise in cold-adapted taxa after 13,180 yr BP suggest a response to cooling at the beginning of the Gerzensee Oscillation.
Resumo:
Sub-fossil Cladocera were studied in a core from Gerzensee (Swiss Plateau) for the late-glacial periods of Oldest Dryas, Bølling, and Allerød. Cladocera assemblages were dominated by cold-tolerant littoral taxa Chydorus sphaericus, Acroperus harpae, Alonella nana, Alona affinis, and Alonella excisa. The rapid warming at the beginning of the Bølling (GI-1e) ca. 14,650 yr before present (BP: before AD 1950) was indicated by an abrupt 2‰ shift in carbonate δ18O and a clear change in pollen assemblages. Cladocera assemblages, in contrast, changed more gradually. C. sphaericus and A. harpae are the most cold-tolerant, and their abundance was highest in the earliest part of the record. Only 150–200 years after the beginning of the Bølling warming we observed an increase in less cold-tolerant A. excisa and A. affinis. The establishment of Alona guttata, A. guttata var. tuberculata, and Pleuroxus unicatus was delayed by ca. 350, 770, and 800 years respectively after the onset of the Bølling. The development of the Cladocera assemblages suggests increasing water temperatures during the Bølling/Allerød, which agrees with the interpretation by von Grafenstein et al. (2013-this issue) that decreasing δ18O values in carbonates in this period reflect increasing summer water temperatures at the sediment–water interface. Other processes also affected the Cladocera community, including the development and diversification of aquatic vegetation favourable for Cladocera. The record is clearly dominated by Chydoridae, as expected for a littoral core. Yet, the planktonic Eubosmina-group occurred throughout the core, with the exception of a period at ca. 13,760–13,420 yr BP. Lake levels reconstructed for this period are relatively low, indicating that the littoral location might have become too shallow for Eubosmina in that period.
Resumo:
Soil microbial biomass is a key determinant of carbon dynamics in the soil. Several studies have shown that soil microbial biomass significantly increases with plant species diversity, but it remains unclear whether plant species diversity can also stabilize soil microbial biomass in a changing environment. This question is particularly relevant as many global environmental change (GEC) factors, such as drought and nutrient enrichment, have been shown to reduce soil microbial biomass. Experiments with orthogonal manipulations of plant diversity and GEC factors can provide insights whether plant diversity can attenuate such detrimental effects on soil microbial biomass. Here, we present the analysis of 12 different studies with 14 unique orthogonal plant diversity × GEC manipulations in grasslands, where plant diversity and at least one GEC factor (elevated CO2, nutrient enrichment, drought, earthworm presence, or warming) were manipulated. Our results show that higher plant diversity significantly enhances soil microbial biomass with the strongest effects in long-term field experiments. In contrast, GEC factors had inconsistent effects with only drought having a significant negative effect. Importantly, we report consistent non-significant effects for all 14 interactions between plant diversity and GEC factors, which indicates a limited potential of plant diversity to attenuate the effects of GEC factors on soil microbial biomass. We highlight that plant diversity is a major determinant of soil microbial biomass in experimental grasslands that can influence soil carbon dynamics irrespective of GEC.
Resumo:
Over recent decades, palaeolimnological records from remote sites have provided convincing evidence for the onset and development of several facets of global environmental change. Remote lakes, defined here as those occurring in high latitude or high altitude regions, have the advantage of not being overprinted by local anthropogenic processes. As such, many of these sites record broad-scale environmental changes, frequently driven by regime shifts in the Earth system. Here, we review a selection of studies from North America and Europe and discuss their broader implications. The history of investigation has evolved synchronously with the scope and awareness of environmental problems. An initial focus on acid deposition switched to metal and other types of pollutants, then climate change and eventually to atmospheric deposition-fertilising effects. However, none of these topics is independent of the other, and all of them affect ecosystem function and biodiversity in profound ways. Currently, remote lake palaeolimnology is developing unique datasets for each region investigated that benchmark current trends with respect to past, purely natural variability in lake systems. Fostering conceptual and methodological bridges with other environmental disciplines will upturn contribution of remote lake palaeolimnology in solving existing and emerging questions in global change science and planetary stewardship.
Resumo:
Global environmental change not only entails changes in mean environmental conditions but also in their variability. Changes in climate variability are often associated with altered disturbance regimes and temporal patterns of resource availability. Here we show that increased variability of soil nutrients strongly promotes another key process of global change, plant invasion. In experimental plant communities, the success of one of the world's most invasive plants, Japanese knotweed, is two- to four-fold increased if extra nutrients are not supplied uniformly, but in a single large pulse, or in multiple pulses of different magnitudes. The superior ability to take advantage of variable environments may be a key mechanism of knotweed dominance, and possibly many other plant invaders. Our study demonstrates that increased nutrient variability can promote plant invasion, and that changes in environmental variability may interact with other global change processes and thereby substantially accelerate ecological change
Resumo:
This paper analyzes the development of environmental concern by using the three waves of the environmental modules of the International Social Survey Programme. First, we discuss the measurement of environmental concern and construct a ranking of countries according to the new 2010 results. Second, we analyze the determinants of environmental concern by employing multilevel models that take individual as well as context effects into account. Third, we explore the longitudinal aspect of the data at the macro level in order to uncover the causal relation between countries’ wealth and environmental concern. The results show that environmental concern is closely correlated with the wealth of the nations. However, environmental concern decreased in almost all nations slightly during the last two decades. The decline was lower in countries with improving economic conditions suggesting that economic growth helps to maintain higher levels of environmental concern.
Resumo:
Building resilience to climate change in agricultural production can ensure the functioning of agricultural-based livelihoods and reduce their vulnerability to climate change impacts. This paper thus explores how buffer capacity, a characteristic feature of resilience, can be conceptualised and used for assessing the resilience of smallholder agriculture to climate change. It uses the case of conservation agriculture farmers in a Kenyan region and examines how their practices contribute to buffer capacity. Surveys were used to collect data from 41 purposely selected conservation agriculture farmers in the Laikipia region of Kenya. Besides descriptive statistics, factor analysis was used to identify the key dimensions that characterise buffer capacity in the study context. The cluster of practices characterising buffer capacity in conservation agriculture include soil protection, adapted crops, intensification/irrigation, mechanisation and livelihood diversification. Various conservation practices increase buffer capacity, evaluated by farmers in economic, social, ecological and other dimensions. Through conservation agriculture, most farmers improved their productivity and incomes despite drought, improved their environment and social relations. Better-off farmers also reduced their need for labour, but this resulted in lesser income-earning opportunities for the poorer farmers, thus reducing the buffer capacity and resilience of the latter.
Resumo:
Infectious diseases result from the interactions of host, pathogens, and, in the case of vector-borne diseases, also vectors. The interactions involve physiological and ecological mechanisms and they have evolved under a given set of environmental conditions. Environmental change, therefore, will alter host-pathogen-vector interactions and, consequently, the distribution, intensity, and dynamics of infectious diseases. Here, we review how climate change may impact infectious diseases of aquatic and terrestrial wildlife. Climate change can have direct impacts on distribution, life cycle, and physiological status of hosts, pathogens and vectors. While a change in either host, pathogen or vector does not necessarily translate into an alteration of the disease, it is the impact of climate change on the interactions between the disease components which is particularly critical for altered disease risks. Finally, climate factors can modulate disease through modifying the ecological networks host-pathogen-vector systems are belonging to, and climate change can combine with other environmental stressors to induce cumulative effects on infectious diseases. Overall, the influence of climate change on infectious diseases involves different mechanisms, it can be modulated by phenotypic acclimation and/or genotypic adaptation, it depends on the ecological context of the host-pathogen-vector interactions, and it can be modulated by impacts of other stressors. As a consequence of this complexity, non-linear responses of disease systems under climate change are to be expected. To improve predictions on climate change impacts on infectious disease, we suggest that more emphasis should be given to the integration of biomedical and ecological research for studying both the physiological and ecological mechanisms which mediate climate change impacts on disease, and to the development of harmonized methods and approaches to obtain more comparable results, as this would support the discrimination of case-specific versus general mechanisms
Resumo:
Besides its primary role in producing food and fiber, agriculture also has relevant effects on several other functions, such as management of renewable natural resources. Climate change (CC) may lead to new trade-offs between agricultural functions or aggravate existing ones, but suitable agricultural management may maintain or even improve the ability of agroecosystems to supply these functions. Hence, it is necessary to identify relevant drivers (e.g., cropping practices, local conditions) and their interactions, and how they affect agricultural functions in a changing climate. The goal of this study was to use a modeling framework to analyze the sensitivity of indicators of three important agricultural functions, namely crop yield (food and fiber production function), soil erosion (soil conservation function), and nutrient leaching (clean water provision function), to a wide range of agricultural practices for current and future climate conditions. In a two-step approach, cropping practices that explain high proportions of variance of the different indicators were first identified by an analysis of variance-based sensitivity analysis. Then, most suitable combinations of practices to achieve best performance with respect to each indicator were extracted, and trade-offs were analyzed. The procedure was applied to a region in western Switzerland, considering two different soil types to test the importance of local environmental constraints. Results show that the sensitivity of crop yield and soil erosion due to management is high, while nutrient leaching mostly depends on soil type. We found that the influence of most agricultural practices does not change significantly with CC; only irrigation becomes more relevant as a consequence of decreasing summer rainfall. Trade-offs were identified when focusing on best performances of each indicator separately, and these were amplified under CC. For adaptation to CC in the selected study region, conservation soil management and the use of cropped grasslands appear to be the most suitable options to avoid trade-offs.
Resumo:
Climate change mitigation policy is driven by scientific knowledge and involves actors from the international, national and local decision-making levels. This multi-level and cross-sectoral context requires collaborative management when designing mitigation solutions over time and space. But collaboration in general policymaking settings, and particularly in the complex domain of climate mitigation, is not an easy task. This paper addresses the question of what drives collaboration among collective actors involved in climate mitigation policy. We wish to investigate whether common beliefs or power structures influence collaboration among actors. We adopt a longitudinal approach to grasp differences between the early and more advanced stages of mitigation policy design. We use survey data to investigate actors’ collaboration, beliefs and power, and apply a Stochastic Actor-oriented Model for network dynamics to three subsequent networks in Swiss climate policy between 1995 and 2012. Results show that common beliefs among actors, as well as formal power structures, have a higher impact on collaboration relations than perceived power structures. Furthermore, those effects hold true for decision-making about initial mitigation strategies, but less so for the implementation of those measures.
Resumo:
Climate adaptation policies increasingly incorporate sustainability principles into their design and implementation. Since successful adaptation by means of adaptive capacity is recognized as being dependent upon progress toward sustainable development, policy design is increasingly characterized by the inclusion of state and non-state actors (horizontal actor integration), cross-sectoral collaboration, and inter-generational planning perspectives. Comparing four case studies in Swiss mountain regions, three located in the Upper Rhone region and one case from western Switzerland, we investigate how sustainability is put into practice. We argue that collaboration networks and sustainability perceptions matter when assessing the implementation of sustainability in local climate change adaptation. In other words, we suggest that adaptation is successful where sustainability perceptions translate into cross-sectoral integration and collaboration on the ground. Data about perceptions and network relations are assessed through surveys and treated via cluster and social network analysis.
Resumo:
This paper analyses the adaptiveness of the Public Agricultural Extension Services (PAES) to climate change. Existing literature, interviews and group discussions among PAES actors in larger Makueni district, Kenya, provided the data for the analyses. The findings show that the PAES already have various elements of adaptiveness in its policies, approaches and methods of extension provision. However, the hierarchical structure of the PAES does not augur well for self-organisation at local levels of extension provision, especially under conditions of abrupt change which climate change might trigger. Most importantly, adpativeness presupposes adaptive capacity but the lack of resources in terms of funding for extension, limited mobility of extension officers, the low extension staff/farmer ratio, the aging of extension staff and significant dependence on donor funding limits the adaptiveness of the PAES. Accordingly criteria and indicators were identified in literature with which an initial assessement of the adaptiiveneess of PAES was conducted. However this assessment framework needs to be improved and future steps will integrate more specific inputs from actors in PAES in order to make the framework operational.
Resumo:
This paper discusses the effects of global change in African mountains, with the example of Mount Kenya. The geographical focus is the northwestern, semi-arid foot zone of the mountain (Laikipia District). Over the past 50 years, this area has experienced rapid and profound transformation, the respective processes of which are all linked to global change. The main driving forces behind these processes have been political and economic in nature. To these an environmental change factor has been added in recent years – climate change. After introducing the area of research, the paper presents three dimensions of global change that are manifested in the region and largely shape its development: Socio-political change, economic change, environmental change. For the regions northwest of Mount Kenya, climate models predict important changes in rainfall distribution that will have a profound impact on freshwater availability and management. The results presented here are based on research undertaken northwest of Mount Kenya within the framework of a series of long-term Kenyan-Swiss research programmes that began in the early 1980s.