43 resultados para Simulação de Monte Carlo
Resumo:
A major barrier to widespread clinical implementation of Monte Carlo dose calculation is the difficulty in characterizing the radiation source within a generalized source model. This work aims to develop a generalized three-component source model (target, primary collimator, flattening filter) for 6- and 18-MV photon beams that match full phase-space data (PSD). Subsource by subsource comparison of dose distributions, using either source PSD or the source model as input, allows accurate source characterization and has the potential to ease the commissioning procedure, since it is possible to obtain information about which subsource needs to be tuned. This source model is unique in that, compared to previous source models, it retains additional correlations among PS variables, which improves accuracy at nonstandard source-to-surface distances (SSDs). In our study, three-dimensional (3D) dose calculations were performed for SSDs ranging from 50 to 200 cm and for field sizes from 1 x 1 to 30 x 30 cm2 as well as a 10 x 10 cm2 field 5 cm off axis in each direction. The 3D dose distributions, using either full PSD or the source model as input, were compared in terms of dose-difference and distance-to-agreement. With this model, over 99% of the voxels agreed within +/-1% or 1 mm for the target, within 2% or 2 mm for the primary collimator, and within +/-2.5% or 2 mm for the flattening filter in all cases studied. For the dose distributions, 99% of the dose voxels agreed within 1% or 1 mm when the combined source model-including a charged particle source and the full PSD as input-was used. The accurate and general characterization of each photon source and knowledge of the subsource dose distributions should facilitate source model commissioning procedures by allowing scaling the histogram distributions representing the subsources to be tuned.
Resumo:
Detailed knowledge of the characteristics of the radiation field shaped by a multileaf collimator (MLC) is essential in intensity modulated radiotherapy (IMRT). A previously developed multiple source model (MSM) for a 6 MV beam was extended to a 15 MV beam and supplemented with an accurate model of an 80-leaf dynamic MLC. Using the supplemented MSM and the MC code GEANT, lateral dose distributions were calculated in a water phantom and a portal water phantom. A field which is normally used for the validation of the step and shoot technique and a field from a realistic IMRT treatment plan delivered with dynamic MLC are investigated. To assess possible spectral changes caused by the modulation of beam intensity by an MLC, the energy spectra in five portal planes were calculated for moving slits of different widths. The extension of the MSM to 15 MV was validated by analysing energy fluences, depth doses and dose profiles. In addition, the MC-calculated primary energy spectrum was verified with an energy spectrum which was reconstructed from transmission measurements. MC-calculated dose profiles using the MSM for the step and shoot case and for the dynamic MLC case are in very good agreement with the measured data from film dosimetry. The investigation of a 13 cm wide field shows an increase in mean photon energy of up to 16% for the 0.25 cm slit compared to the open beam for 6 MV and of up to 6% for 15 MV, respectively. In conclusion, the MSM supplemented with the dynamic MLC has proven to be a powerful tool for investigational and benchmarking purposes or even for dose calculations in IMRT.
Resumo:
PURPOSE: Study of behavior and influence of a multileaf collimator (MLC) on dose calculation, verification, and portal energy spectra in the case of intensity-modulated fields obtained with a step-and-shoot or a dynamic technique. METHODS: The 80-leaf MLC for the Varian Clinac 2300 C/D was implemented in a previously developed Monte Carlo (MC) based multiple source model (MSM) for a 6 MV photon beam. Using this model and the MC program GEANT, dose distributions, energy fluence maps and energy spectra at different portal planes were calculated for three different MLC applications. RESULTS: The comparison of MC-calculated dose distributions in the phantom and portal plane, with those measured with films showed an agreement within 3% and 1.5 mm for all cases studied. The deviations mainly occur in the extremes of the intensity modulation. The MC method allows to investigate, among other aspects, dose components, energy fluence maps, tongue-and-groove effects and energy spectra at portal planes. CONCLUSION: The MSM together with the implementation of the MLC is appropriate for a number of investigations in intensity-modulated radiation therapy (IMRT).
Resumo:
A multiple source model (MSM) for the 6 MV beam of a Varian Clinac 2300 C/D was developed by simulating radiation transport through the accelerator head for a set of square fields using the GEANT Monte Carlo (MC) code. The corresponding phase space (PS) data enabled the characterization of 12 sources representing the main components of the beam defining system. By parametrizing the source characteristics and by evaluating the dependence of the parameters on field size, it was possible to extend the validity of the model to arbitrary rectangular fields which include the central 3 x 3 cm2 field without additional precalculated PS data. Finally, a sampling procedure was developed in order to reproduce the PS data. To validate the MSM, the fluence, energy fluence and mean energy distributions determined from the original and the reproduced PS data were compared and showed very good agreement. In addition, the MC calculated primary energy spectrum was verified by an energy spectrum derived from transmission measurements. Comparisons of MC calculated depth dose curves and profiles, using original and PS data reproduced by the MSM, agree within 1% and 1 mm. Deviations from measured dose distributions are within 1.5% and 1 mm. However, the real beam leads to some larger deviations outside the geometrical beam area for large fields. Calculated output factors in 10 cm water depth agree within 1.5% with experimentally determined data. In conclusion, the MSM produces accurate PS data for MC photon dose calculations for the rectangular fields specified.
Resumo:
Monte Carlo (code GEANT) produced 6 and 15 MV phase space (PS) data were used to define several simple photon beam models. For creating the PS data the energy of starting electrons hitting the target was tuned to get correct depth dose data compared to measurements. The modeling process used the full PS information within the geometrical boundaries of the beam including all scattered radiation of the accelerator head. Scattered radiation outside the boundaries was neglected. Photons and electrons were assumed to be radiated from point sources. Four different models were investigated which involved different ways to determine the energies and locations of beam particles in the output plane. Depth dose curves, profiles, and relative output factors were calculated with these models for six field sizes from 5x5 to 40x40cm2 and compared to measurements. Model 1 uses a photon energy spectrum independent of location in the PS plane and a constant photon fluence in this plane. Model 2 takes into account the spatial particle fluence distribution in the PS plane. A constant fluence is used again in model 3, but the photon energy spectrum depends upon the off axis position. Model 4, finally uses the spatial particle fluence distribution and off axis dependent photon energy spectra in the PS plane. Depth dose curves and profiles for field sizes up to 10x10cm2 were not model sensitive. Good agreement between measured and calculated depth dose curves and profiles for all field sizes was reached for model 4. However, increasing deviations were found for increasing field sizes for models 1-3. Large deviations resulted for the profiles of models 2 and 3. This is due to the fact that these models overestimate and underestimate the energy fluence at large off axis distances. Relative output factors consistent with measurements resulted only for model 4.
Resumo:
Today electronic portal imaging devices (EPID's) are used primarily to verify patient positioning. They have, however, also the potential as 2D-dosimeters and could be used as such for transit dosimetry or dose reconstruction. It has been proven that such devices, especially liquid filled ionization chambers, have a stable dose response relationship which can be described in terms of the physical properties of the EPID and the pulsed linac radiation. For absolute dosimetry however, an accurate method of calibration to an absolute dose is needed. In this work, we concentrate on calibration against dose in a homogeneous water phantom. Using a Monte Carlo model of the detector we calculated dose spread kernels in units of absolute dose per incident energy fluence and compared them to calculated dose spread kernels in water at different depths. The energy of the incident pencil beams varied between 0.5 and 18 MeV. At the depth of dose maximum in water for a 6 MV beam (1.5 cm) and for a 18 MV beam (3.0 cm) we observed large absolute differences between water and detector dose above an incident energy of 4 MeV but only small relative differences in the most frequent energy range of the beam energy spectra. It is shown that for a 6 MV beam the absolute reference dose measured at 1.5 cm water depth differs from the absolute detector dose by 3.8%. At depth 1.2 cm in water, however, the relative dose differences are almost constant between 2 and 6 MeV. The effects of changes in the energy spectrum of the beam on the dose responses in water and in the detector are also investigated. We show that differences larger than 2% can occur for different beam qualities of the incident photon beam behind water slabs of different thicknesses. It is therefore concluded that for high-precision dosimetry such effects have to be taken into account. Nevertheless, the precise information about the dose response of the detector provided in this Monte Carlo study forms the basis of extracting directly the basic radiometric quantities photon fluence and photon energy fluence from the detector's signal using a deconvolution algorithm. The results are therefore promising for future application in absolute transit dosimetry and absolute dose reconstruction.
Resumo:
Monte Carlo simulations arrive at their results by introducing randomness, sometimes derived from a physical randomizing device. Nonetheless, we argue, they open no new epistemic channels beyond that already employed by traditional simulations: the inference by ordinary argumentation of conclusions from assumptions built into the simulations. We show that Monte Carlo simulations cannot produce knowledge other than by inference, and that they resemble other computer simulations in the manner in which they derive their conclusions. Simple examples of Monte Carlo simulations are analysed to identify the underlying inferences.
Resumo:
Monte Carlo simulation is a powerful method in many natural and social sciences. But what sort of method is it? And where does its power come from? Are Monte Carlo simulations experiments, theories or something else? The aim of this talk is to answer these questions and to explain the power of Monte Carlo simulations. I provide a classification of Monte Carlo techniques and defend the claim that Monte Carlo simulation is a sort of inference.
Resumo:
This article proposes computing sensitivities of upper tail probabilities of random sums by the saddlepoint approximation. The considered sensitivity is the derivative of the upper tail probability with respect to the parameter of the summation index distribution. Random sums with Poisson or Geometric distributed summation indices and Gamma or Weibull distributed summands are considered. The score method with importance sampling is considered as an alternative approximation. Numerical studies show that the saddlepoint approximation and the method of score with importance sampling are very accurate. But the saddlepoint approximation is substantially faster than the score method with importance sampling. Thus, the suggested saddlepoint approximation can be conveniently used in various scientific problems.