27 resultados para Ship waves


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral electrical activity is highly nonstationary because the brain reacts to ever changing external stimuli and continuously monitors internal control circuits. However, a large amount of energy is spent to maintain remarkably stationary activity patterns and functional inter-relations between different brain regions. Here we examine linear EEG correlations in the peri-ictal transition of focal onset seizures, which are typically understood to be manifestations of dramatically changing inter-relations. Contrary to expectations we find stable correlation patterns with a high similarity across different patients and different frequency bands. This skeleton of spatial correlations may be interpreted as a signature of standing waves of electrical brain activity constituting a dynamical ground state. Such a state could promote the formation of spatiotemporal neuronal assemblies and may be important for the integration of information stemming from different local circuits of the functional brain network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a numerical study of electromagnetic wave transport in disordered quasi-one-dimensional waveguides at terahertz frequencies. Finite element method calculations of terahertz wave propagation within LiNbO3 waveguides with randomly arranged air-filled circular scatterers exhibit an onset of Anderson localization at experimentally accessible length scales. Results for the average transmission as a function of waveguide length and scatterer density demonstrate a clear crossover from diffusive to localized transport regime. In addition, we find that transmission fluctuations grow dramatically when crossing into the localized regime. Our numerical results are in good quantitative agreement with theory over a wide range of experimentally accessible parameters both in the diffusive and localized regime opening the path towards experimental observation of terahertz wave localization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on magnetic field measurements made in the innermost coma of 67P/Churyumov-Gerasimenko in its low-activity state. Quasi-coherent, large-amplitude (δ B/B ~ 1), compressional magnetic field oscillations at ~ 40 mHz dominate the immediate plasma environment of the nucleus. This differs from previously studied cometary interaction regions where waves at the cometary ion gyro-frequencies are the main feature. Thus classical pickup-ion-driven instabilities are unable to explain the observations. We propose a cross-field current instability associated with newborn cometary ion currents as a possible source mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the many technological innovations that had for some time contributed to a significant reduction of global travel times, intercontinental ship passages in the late nineteenth century were no quick affair. Depending on the route, such journeys could last between a few weeks and several months. During this time, crew and passengers shared the narrow space of the ship—largely isolated from the rest of the world and basically suspended between origin and destination. On many long-distance steamers, the production and consumption of ship newspapers became one possible means of whiling away the time in transit for the passengers. In this article, we seek to demonstrate how these extraordinary publications can serve as lenses not only on shipboard life but actually on historical actors of globalisation in a more general context. First, we seek to highlight why and how ship newspapers played an important role in the shaping of the peculiar social space of the passenger ship. We will then give a brief overview of the context in which these newspapers were produced and what kind of news they contained. In a third step, we will introduce two brief examples of topics discussed in ship newspapers and outline possible fields of research on which ship newspapers will be able to shed new light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Alpine region is warming fast, and concurrently, the frequency and intensity of climate extremes are increasing. It is currently unclear whether alpine ecosystems are sensitive or resistant to such extremes. We subjected Swiss alpine grassland communities to heat waves with varying intensity by transplanting monoliths to four different elevations (2440–660 m above sea level) for 17 d. Half of these were regularly irrigated while the other half were deprived of irrigation to additionally induce a drought at each site. Heat waves had no significant impacts on fluorescence (Fv/Fm, a stress indicator), senescence and aboveground productivity if irrigation was provided. However, when heat waves coincided with drought, the plants showed clear signs of stress, resulting in vegetation browning and reduced phytomass production. This likely resulted from direct drought effects, but also, as measurements of stomatal conductance and canopy temperatures suggest, from increased high-temperature stress as water scarcity decreased heat mitigation through transpiration. The immediate responses to heat waves (with or without droughts) recorded in these alpine grasslands were similar to those observed in the more extensively studied grasslands from temperate climates. Responses following climate extremes may differ in alpine environments, however, because the short growing season likely constrains recovery.