35 resultados para Shared Service Center (“SSC”)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is focused on the integration of state-of-the-art technologies in the fields of telecommunications, simulation algorithms, and data mining in order to develop a Type 1 diabetes patient's semi to fully-automated monitoring and management system. The main components of the system are a glucose measurement device, an insulin delivery system (insulin injection or insulin pumps), a mobile phone for the GPRS network, and a PDA or laptop for the Internet. In the medical environment, appropriate infrastructure for storage, analysis and visualizing of patients' data has been implemented to facilitate treatment design by health care experts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper two models for the simulation of glucose-insulin metabolism of children with Type 1 diabetes are presented. The models are based on the combined use of Compartmental Models (CMs) and artificial Neural Networks (NNs). Data from children with Type 1 diabetes, stored in a database, have been used as input to the models. The data are taken from four children with Type 1 diabetes and contain information about glucose levels taken from continuous glucose monitoring system, insulin intake and food intake, along with corresponding time. The influences of taken insulin on plasma insulin concentration, as well as the effect of food intake on glucose input into the blood from the gut, are estimated from the CMs. The outputs of CMs, along with previous glucose measurements, are fed to a NN, which provides short-term prediction of glucose values. For comparative reasons two different NN architectures have been tested: a Feed-Forward NN (FFNN) trained with the back-propagation algorithm with adaptive learning rate and momentum, and a Recurrent NN (RNN), trained with the Real Time Recurrent Learning (RTRL) algorithm. The results indicate that the best prediction performance can be achieved by the use of RNN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 1 diabetes mellitus is a chronic disease characterized by blood glucose levels out of normal range due to inability of insulin production. This dysfunction leads to many short- and long-term complications. In this paper, a system for tele-monitoring and tele-management of Type 1 diabetes patients is proposed, aiming at reducing the risk of diabetes complications and improving quality of life. The system integrates Wireless Personal Area Networks (WPAN), mobile infrastructure, and Internet technology along with commercially available and novel glucose measurement devices, advanced modeling techniques, and tools for the intelligent processing of the available diabetes patients information. The integration of the above technologies enables intensive monitoring of blood glucose levels, treatment optimisation, continuous medical care, and improvement of quality of life for Type 1 diabetes patients, without restrictions in everyday life activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a simulation model of glucose-insulin metabolism for Type 1 diabetes patients is presented. The proposed system is based on the combination of Compartmental Models (CMs) and artificial Neural Networks (NNs). This model aims at the development of an accurate system, in order to assist Type 1 diabetes patients to handle their blood glucose profile and recognize dangerous metabolic states. Data from a Type 1 diabetes patient, stored in a database, have been used as input to the hybrid system. The data contain information about measured blood glucose levels, insulin intake, and description of food intake, along with the corresponding time. The data are passed to three separate CMs, which produce estimations about (i) the effect of Short Acting (SA) insulin intake on blood insulin concentration, (ii) the effect of Intermediate Acting (IA) insulin intake on blood insulin concentration, and (iii) the effect of carbohydrate intake on blood glucose absorption from the gut. The outputs of the three CMs are passed to a Recurrent NN (RNN) in order to predict subsequent blood glucose levels. The RNN is trained with the Real Time Recurrent Learning (RTRL) algorithm. The resulted blood glucose predictions are promising for the use of the proposed model for blood glucose level estimation for Type 1 diabetes patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the development of a multifunctional platform equipped with an array of silicon nitride micropipettes with dimensions allowing the implementation of extra- and intracellular operations. Micropipettes with outer diameter that ranges from 6 mum down to 300 nm and with walls thicknesses of 500 down to 150 nm are presented. The generic technology developed to fabricate these micropipettes has a number of advantages, including the ability to be implemented as ion-selective electrodes for (A) intracellular and (B) extracellular recordings and as (C) local drug microdispensers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atrial fibrillation (AF) is the most common cardiac arrhythmia, and is responsible for the highest number of rhythm-related disorders and cardioembolic strokes worldwide. Intracardiac signal analysis during the onset of paroxysmal AF led to the discovery of pulmonary vein as a triggering source of AF, which has led to the development of pulmonary vein ablation--an established curative therapy for drug-resistant AF. Complex, multicomponent and rapid electrical activity widely involving the atrial substrate characterizes persistent/permanent AF. Widespread nature of the problem and complexity of signals in persistent AF reduce the success rate of ablation therapy. Although signal processing applied to extraction of relevant features from these complex electrograms has helped to improve the efficacy of ablation therapy in persistent/permanent AF, improved understanding of complex signals should help to identify sources of AF and further increase the success rate of ablation therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial pancreas is in the forefront of research towards the automatic insulin infusion for patients with type 1 diabetes. Due to the high inter- and intra-variability of the diabetic population, the need for personalized approaches has been raised. This study presents an adaptive, patient-specific control strategy for glucose regulation based on reinforcement learning and more specifically on the Actor-Critic (AC) learning approach. The control algorithm provides daily updates of the basal rate and insulin-to-carbohydrate (IC) ratio in order to optimize glucose regulation. A method for the automatic and personalized initialization of the control algorithm is designed based on the estimation of the transfer entropy (TE) between insulin and glucose signals. The algorithm has been evaluated in silico in adults, adolescents and children for 10 days. Three scenarios of initialization to i) zero values, ii) random values and iii) TE-based values have been comparatively assessed. The results have shown that when the TE-based initialization is used, the algorithm achieves faster learning with 98%, 90% and 73% in the A+B zones of the Control Variability Grid Analysis for adults, adolescents and children respectively after five days compared to 95%, 78%, 41% for random initialization and 93%, 88%, 41% for zero initial values. Furthermore, in the case of children, the daily Low Blood Glucose Index reduces much faster when the TE-based tuning is applied. The results imply that automatic and personalized tuning based on TE reduces the learning period and improves the overall performance of the AC algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positron emission tomography (PET)-computed tomography (CT) using [18F]-fluorodeoxyglucose (FDG) (FDG-PET/CT) is a valuable method for initial staging and follow up of patients with alveolar echinococcosis (AE). However, the cells responsible for FDG uptake have not been clearly identified. The main goal of our study was to evaluate the uptake of PET tracers by the cells involved in the host-parasite reaction around AE lesions as the first step to develop a specific PET tracer that would allow direct assessment of parasite viability in AE. Candidate molecules ([18F]-fluorotyrosine (FET), [18F]-fluorothymidine (FLT), and [18F]-fluorometylcholine (FMC), were compared to FDG by in vitro studies on human leukocytes and parasite vesicles. Our results confirmed that FDG was mainly consumed by immune cells and showed that FLT was the best candidate tracer for parasite metabolism. Indeed, parasite cells exhibited high uptake of FLT. We also performed PET/CT scans in mice infected intraperitoneally with E. multilocularis metacestodes. PET images showed no FDG or FLT uptake in parasitic lesions. This preliminary study assessed the metabolic activity of human leukocytes and AE cells using radiolabeling. Future studies could develop a specific PET tracer for AE lesions to improve lesion detection and echinococcosis treatment in patients. Our results demonstrated that a new animal model is needed for preclinical PET imaging to better mimic human hepatic and/or periparasitic metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last decade, a plethora of computer-aided diagnosis (CAD) systems have been proposed aiming to improve the accuracy of the physicians in the diagnosis of interstitial lung diseases (ILD). In this study, we propose a scheme for the classification of HRCT image patches with ILD abnormalities as a basic component towards the quantification of the various ILD patterns in the lung. The feature extraction method relies on local spectral analysis using a DCT-based filter bank. After convolving the image with the filter bank, q-quantiles are computed for describing the distribution of local frequencies that characterize image texture. Then, the gray-level histogram values of the original image are added forming the final feature vector. The classification of the already described patches is done by a random forest (RF) classifier. The experimental results prove the superior performance and efficiency of the proposed approach compared against the state-of-the-art.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Correct predictions of future blood glucose levels in individuals with Type 1 Diabetes (T1D) can be used to provide early warning of upcoming hypo-/hyperglycemic events and thus to improve the patient's safety. To increase prediction accuracy and efficiency, various approaches have been proposed which combine multiple predictors to produce superior results compared to single predictors. Three methods for model fusion are presented and comparatively assessed. Data from 23 T1D subjects under sensor-augmented pump (SAP) therapy were used in two adaptive data-driven models (an autoregressive model with output correction - cARX, and a recurrent neural network - RNN). Data fusion techniques based on i) Dempster-Shafer Evidential Theory (DST), ii) Genetic Algorithms (GA), and iii) Genetic Programming (GP) were used to merge the complimentary performances of the prediction models. The fused output is used in a warning algorithm to issue alarms of upcoming hypo-/hyperglycemic events. The fusion schemes showed improved performance with lower root mean square errors, lower time lags, and higher correlation. In the warning algorithm, median daily false alarms (DFA) of 0.25%, and 100% correct alarms (CA) were obtained for both event types. The detection times (DT) before occurrence of events were 13.0 and 12.1 min respectively for hypo-/hyperglycemic events. Compared to the cARX and RNN models, and a linear fusion of the two, the proposed fusion schemes represents a significant improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous designs of bioprosthetic valves exist. The sutureless surgical valve is a newer design concept which combines elements of the transcatheter valve technology with surgical valves. This design aims at shorter and easier implantation. It was the aim of this study to perform hemodynamic and kinematic measurements for this type of valves to serve as a baseline for following studies which investigate the effect of the aortic root on the valve performance. To this end, the Edwards Intuity aortic valve was investigated in a new in vitro flow loop mimicking the left heart. The valve was implanted in a transparent, compliant aortic root model, and the valve kinematics was investigated using a high speed camera together with synchronized hemodynamic measurements of pressures and flows. The valve closure was asynchronous (one by one leaflet), and the valve started to close before the deceleration of the fluid. The aortic root model showed a dilation of the sinuses which was different to the ascending aorta, and the annulus was found to move towards the left ventricle during diastole and towards the aorta during systole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Facial nerve segmentation plays an important role in surgical planning of cochlear implantation. Clinically available CBCT images are used for surgical planning. However, its relatively low resolution renders the identification of the facial nerve difficult. In this work, we present a supervised learning approach to enhance facial nerve image information from CBCT. A supervised learning approach based on multi-output random forest was employed to learn the mapping between CBCT and micro-CT images. Evaluation was performed qualitatively and quantitatively by using the predicted image as input for a previously published dedicated facial nerve segmentation, and cochlear implantation surgical planning software, OtoPlan. Results show the potential of the proposed approach to improve facial nerve image quality as imaged by CBCT and to leverage its segmentation using OtoPlan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to determine what activity of daily living a person performs is of interest in many application domains. It is possible to determine the physical and cognitive capabilities of the elderly by inferring what activities they perform in their houses. Our primary aim was to establish a proof of concept that a wireless sensor system can monitor and record physical activity and these data can be modeled to predict activities of daily living. The secondary aim was to determine the optimal placement of the sensor boxes for detecting activities in a room. A wireless sensor system was set up in a laboratory kitchen. The ten healthy participants were requested to make tea following a defined sequence of tasks. Data were collected from the eight wireless sensor boxes placed in specific places in the test kitchen and analyzed to detect the sequences of tasks performed by the participants. These sequence of tasks were trained and tested using the Markov Model. Data analysis focused on the reliability of the system and the integrity of the collected data. The sequence of tasks were successfully recognized for all subjects and the averaged data pattern of tasks sequences between the subjects had a high correlation. Analysis of the data collected indicates that sensors placed in different locations are capable of recognizing activities, with the movement detection sensor contributing the most to detection of tasks. The central top of the room with no obstruction of view was considered to be the best location to record data for activity detection. Wireless sensor systems show much promise as easily deployable to monitor and recognize activities of daily living.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer games for a serious purpose - so called serious games can provide additional information for the screening and diagnosis of cognitive impairment. Moreover, they have the advantage of being an ecological tool by involving daily living tasks. However, there is a need for better comprehensive designs regarding the acceptance of this technology, as the target population is older adults that are not used to interact with novel technologies. Moreover given the complexity of the diagnosis and the need for precise assessment, an evaluation of the best approach to analyze the performance data is required. The present study examines the usability of a new screening tool and proposes several new outlines for data analysis.