23 resultados para Semisolid Structure Formation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the synthesis of the two novel nucleosides iso-tc-T and bcen-T, belonging to the bicyclo-/tricyclo-DNA molecular platform. In both modifications the torsion around C6’–C7’ within the carbocyclic ring is planarized by either the presence of a C6’–C7’ double bond or a cyclopropane ring. Structural analysis of these two nucleosides by X-ray analysis reveals a clear preference of torsion angle γ for the gauche orientation with the furanose ring in a near perfect 2’-endo conformation. Both modifications were incorporated into oligodeoxynucleotides and their thermal melting behavior with DNA and RNA as complements was assessed. We found that the iso-tc-T modification was significantly more destabilizing in duplex formation compared to the bcen-T modification. In addition, duplexes with complementary RNA were less stable as compared to duplexes with DNA as complement. A structure/affinity analysis, including the already known bc-T and tc-T modifications, does not lead to a clear correlation of the orientation of torsion angle γ with DNA or RNA affinity. There is, however, some correlation between furanose conformation (N- or S-type) and affinity in the sense that a preference for a 3’-endo like conformation is associated with a preference for RNA as complement. As a general rule it appears that Tm data of single modifications with nucleosides of the bicyclo-/tricyclo-DNA platform within deoxyoligonucleotides are not predictive for the stability of fully modified oligonucleotides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by the presence of motor and vocal tics. We hypothesized that patients with this syndrome would present an aberrant pattern of cortical formation, which could potentially reflect global alterations of brain development. Using 3 Tesla structural neuroimaging, we compared sulcal depth, opening, and length and thickness of sulcal gray matter in 52 adult patients and 52 matched controls. Cortical sulci were automatically reconstructed and identified over the whole brain, using BrainVisa software. We focused on frontal, parietal, and temporal cortical regions, in which abnormal structure and functional activity were identified in previous neuroimaging studies. Partial correlation analysis with age, sex, and treatment as covariables of noninterest was performed amongst relevant clinical and neuroimaging variables in patients. Patients with Gilles de la Tourette syndrome showed lower depth and reduced thickness of gray matter in the pre- and post-central as well as superior, inferior, and internal frontal sulci. In patients with associated obsessive-compulsive disorder, additional structural changes were found in temporal, insular, and olfactory sulci. Crucially, severity of tics and of obsessive-compulsive disorder measured by Yale Global Tic severity scale and Yale-Brown Obsessive-Compulsive scale, respectively, correlated with structural sulcal changes in sensorimotor, temporal, dorsolateral prefrontal, and middle cingulate cortical areas. Patients with Gilles de la Tourette syndrome displayed an abnormal structural pattern of cortical sulci, which correlated with severity of clinical symptoms. Our results provide further evidence of abnormal brain development in GTS. © 2015 International Parkinson and Movement Disorder Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The polypeptide composition of the U7 small nuclear ribonucleoprotein (snRNP) involved in histone messenger RNA (mRNA) 3' end formation has recently been elucidated. In contrast to spliceosomal snRNPs, which contain a ring-shaped assembly of seven so-called Sm proteins, in the U7 snRNP the Sm proteins D1 and D2 are replaced by U7-specific Sm-like proteins, Lsm10 and Lsm11. This polypeptide composition and the unusual structure of Lsm11, which plays a role in histone RNA processing, represent new themes in the biology of Sm/Lsm proteins. Moreover this structure has important consequences for snRNP assembly that is mediated by two complexes containing the PRMT5 methyltransferase and the SMN (survival of motor neurons) protein, respectively. Finally, the ability to alter this polypeptide composition by a small mutation in U7 snRNA forms the basis for using modified U7 snRNA derivatives to alter specific pre-mRNA splicing events, thereby opening up a new way for antisense gene therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antisense oligonucleotides are medical agents for the treatment of genetic diseases that are designed to interact specifically with mRNA. This interaction either induces enzymatic degradation of the targeted RNA or modifies processing pathways, e.g. by inducing alternative splicing of the pre-mRNA. The latter mechanism applies to the treatment of Duchenne muscular dystrophy with a sugar-modified DNA analogue called tricyclo-DNA (tcDNA). In tcDNA the ribose sugar-moiety is extended to a three-membered ring system, which augments the binding affinity and the selectivity of the antisense oligonucleotide for its target. The advent of chemically modified nucleic acids for antisense therapy presents a challenge to diagnostic tools, which must be able to cope with a variety of structural analogues. Mass spectrometry meets this demand for non-enzyme based sequencing methods ideally, because the technique is largely unaffected by structural modifications of the analyte. Sequence coverage of a fully modified tcDNA 15mer can be obtained in a single tandem mass spectrometric experiment. Beyond sequencing experiments, tandem mass spectrometry was applied to elucidate the gas-phase structure and stability of tcDNA:DNA and tcDNA:RNA hybrid duplexes. Most remarkable is the formation of truncated duplexes upon collision-induced dissociation of these structures. Our data suggest that the cleavage site within the duplex is directed by the modified sugar-moiety. Moreover, the formation of truncated duplexes manifests the exceptional stability of the hybrid duplexes in the gas-phase. This stability arises from the modified sugar-moiety, which locks the tcDNA single strand into a conformation that is similar to RNA in A-form duplexes. The conformational particularity of tcDNA in the gas-phase was confirmed by ion mobility-mass spectrometry experiments on tcDNA, DNA, and RNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histone RNA 3' end formation occurs through a specific cleavage reaction that requires, among other things, base-pairing interactions between a conserved spacer element in the pre-mRNA and the minor U7 snRNA present as U7 snRNP. An oligonucleotide complementary to the first 16 nucleotides of U7 RNA can be used to characterize U7 snRNPs from nuclear extracts by native gel electrophoresis. Using similar native gel techniques, we present direct biochemical evidence for a stable association between histone pre-mRNA and U7 snRNPs. Other complexes formed in the nuclear extract are dependent on the 5' cap structure and on the conserved hairpin element of histone pre-mRNA, respectively. However, in contrast to the U7-specific complex, their formation is not required for processing. Comparison of several authentic and mutant histone pre-mRNAs with different spacer sequences demonstrates that the formation and stability of the U7-specific complex closely follows the predicted stability of the potential RNA-RNA hybrid. However, this does not exclude a stabilization of the complex by U7 snRNP structural proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last decade, thanks to the development of sophisticated numerical codes, major breakthroughs have been achieved in our understanding of the formation of asteroid families by catastrophic disruption of large parent bodies. In this review, we describe numerical simulations of asteroid collisions that reproduced the main properties of families, accounting for both the fragmentation of an asteroid at the time of impact and the subsequent gravitational interactions of the generated fragments. The simulations demonstrate that the catastrophic disruption of bodies larger than a few hundred meters in diameter leads to the formation of large aggregates due to gravitational reaccumulation of smaller fragments, which helps explain the presence of large members within asteroid families. Thus, for the first time, numerical simulations successfully reproduced the sizes and ejection velocities of members of representative families. Moreover, the simulations provide constraints on the family dynamical histories and on the possible internal structure of family members and their parent bodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In modern democratic systems, usually no single collective actor is able to decisively influence political decision-making. Instead, actors with similar preferences form coalitions in order to gain more influence in the policy process. In the Swiss political system in particular, institutional veto points and the consensual culture of policy-making provide strong incentives for actors to form large coalitions. Coalitions are thus especially important in political decision-making in Switzerland, and are accordingly a central focus of this book. According to one of our core claims - to understand the actual functioning of Swiss consensus democracy - one needs to extend the analysis beyond formal institutions to also include informal procedures and practices. Coalitions of actors play a crucial role in this respect. They are a cornerstone of decision-making structures, and they inform us about patterns of conflict, collaboration and power among actors. Looking at coalitions is all the more interesting in the Swiss political system, since the coalition structure is supposed to vary across policy processes. Given the absence of a fixed government coalition, actors need to form new coalitions in each policy process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When lung development is not interrupted by premature birth and unaffected by genetic or environmental disturbances, all components develop with complex control to form a functional organ with a predictable timeline during fetal development. In this chapter we describe the relationship between morphological development and function in both physiological and pathological conditions in human lung development. Tree-like growth of the lung begins during the first few weeks postconception, with the embryonic stage characterized by branching morphogenesis in both the airways and blood vessels, separately in the left and right lung buds, which appear near day 26 postcoitus (p.c.). Branching continues through the embryonic stage, with proliferation of mesenchymal and epithelial cells and apoptosis near branch points and in the areas of new formation. The pseudoglandular stage (weeks 5–17 p.c.) is characterized by accelerated cellular proliferation and airway and vascular branching, with epithelial differentiation in proximal and distal airways. Further epithelial differentiation, angiogenesis of the parenchymal capillary network, and the first formation of the air–blood barrier characterize the canalicular stage (16–26 weeks p.c.), just before the completion of branching morphogenesis (saccular stage, weeks 24–38 p.c.) and the start of alveolarization (week 36 through adolescence).