65 resultados para Sediment anoxia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To provide an integrated perspective on mineral particle effects in salmonids, juvenile rainbow trout (Oncorhynchus mykiss) were exposed to daily mica particle pulses for 8 and 24 days. On day 8, increased immature erythrocyte proportions indicated a previous stress response. This response was absent on day 24, on which condition factor as well as plasma protein and aspartate aminotransferase activity decreased. The latter two related negatively to the hepato-somatic index, suggesting metabolic adaptations. The hepato-somatic index increased on days 8 and 24, while spleen-somatic index increased on day 24. No histopathological damage occurred in gills, liver, spleen, or kidney. However, splenic melano-macrophages increased on both days, and hyaline degenerations of kidney tubular cells were apparent on day 24. Overall, particle pulses affected rainbow trout more via turbidity rather than by physical damage. We conclude that (i) rainbow trout may adapt to sediment pulses as early as 8 days of exposure and (ii) particle pulses over 24 days can cause structural and metabolic changes in rainbow trout, even when gill damage is absent and apical effects on condition are moderate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9–56.5 %), total organic carbon (TOC; n = 309; gradient: 0–2.9 %), and total inorganic carbon (TIC; n = 152; gradient: 0–0.4 %) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El’gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2 CV = 0.86–0.91 and low root mean square error of crossvalidation (RMSECV) (3.1–7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El’gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6–3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was �3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial–interglacial cycles during the Quaternary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Last Interglacial Period (LIP) is often regarded as a good analogue for potential climatic conditions under predicted global warming scenarios. Despite this, there is still debate over the nature, duration and frequency of climatic changes during this period. One particularly contentious issue has been the apparent evidence of climatic instability identified in many marine cores but seemingly lacking from many terrestrial archives, especially within the Arctic, a key region for global climate change research. In this paper, geochemical records from Lake El'gygytgyn, north-eastern Russia, are used to infer past climatic changes during the LIP from within the high Arctic. With a sampling resolution of ~20–~90 years, these records offer the potential for detailed, high-resolution palaeoclimate reconstruction. This study shows that the LIP commenced in central Chukotka ~129 thousand years ago (ka), with the warmest climatic conditions occurring between ~128 and 127 ka before being interrupted by a short-lived cold reversal. Mild climatic conditions then persisted until ~122 ka when a marked reduction in the sedimentation rate suggests a decrease in precipitation. A further climatic deterioration at ~118 ka marks the return to glacial conditions. This study highlights the value of incorporating several geochemical proxies when inferring past climatic conditions, thus providing the potential to identify signals related to environmental change within the catchment. We also demonstrate the importance of considering how changes in sedimentation rate influence proxy records, in order to develop robust palaeoenvironmental reconstructions.