32 resultados para Science, Technology, Engineering and Math fields (STEM)


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enterprise Applications are complex software systems that manipulate much persistent data and interact with the user through a vast and complex user interface. In particular applications written for the Java 2 Platform, Enterprise Edition (J2EE) are composed using various technologies such as Enterprise Java Beans (EJB) or Java Server Pages (JSP) that in turn rely on languages other than Java, such as XML or SQL. In this heterogeneous context applying existing reverse engineering and quality assurance techniques developed for object-oriented systems is not enough. Because those techniques have been created to measure quality or provide information about one aspect of J2EE applications, they cannot properly measure the quality of the entire system. We intend to devise techniques and metrics to measure quality in J2EE applications considering all their aspects and to aid their evolution. Using software visualization we also intend to inspect to structure of J2EE applications and all other aspects that can be investigate through this technique. In order to do that we also need to create a unified meta-model including all elements composing a J2EE application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessing and managing risks relating to the consumption of food stuffs for humans and to the environment has been one of the most complex legal issues in WTO law, ever since the Agreement on Sanitary and Phytosanitary Measures was adopted at the end of the Uruguay Round and entered into force in 1995. The problem was expounded in a number of cases. Panels and the Appellate Body adopted different philosophies in interpreting the agreement and the basic concept of risk assessment as defined in Annex A para. 4 of the Agreement. Risk assessment entails fundamental question on law and science. Different interpretations reflect different underlying perceptions of science and its relationship to the law. The present thesis supported by the Swiss National Research Foundation undertakes an in-depth analysis of these underlying perceptions. The author expounds the essence and differences of positivism and relativism in philosophy and natural sciences. He clarifies the relationship of fundamental concepts such as risk, hazards and probability. This investigation is a remarkable effort on the part of lawyer keen to learn more about the fundamentals based upon which the law – often unconsciously – is operated by the legal profession and the trade community. Based upon these insights, he turns to a critical assessment of jurisprudence both of panels and the Appellate Body. Extensively referring and discussing the literature, he deconstructs findings and decisions in light of implied and assumed underlying philosophies and perceptions as to the relationship of law and science, in particular in the field of food standards. Finding that both positivism and relativism does not provide adequate answers, the author turns critical rationalism and applies the methodologies of falsification developed by Karl R. Popper. Critical rationalism allows combining discourse in science and law and helps preparing the ground for a new approach to risk assessment and risk management. Linking the problem to the doctrine of multilevel governance the author develops a theory allocating risk assessment to international for a while leaving the matter of risk management to national and democratically accountable government. While the author throughout the thesis questions the possibility of separating risk assessment and risk management, the thesis offers new avenues which may assist in structuring a complex and difficult problem

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land use science has traditionally used case-study approaches for in-depth investigation of land use change processes and impacts. Meta-studies synthesize findings across case-study evidence to identify general patterns. In this paper, we provide a review of meta-studies in land use science. Various meta-studies have been conducted, which synthesize deforestation and agricultural land use change processes, while other important changes, such as urbanization, wetland conversion, and grassland dynamics have hardly been addressed. Meta-studies of land use change impacts focus mostly on biodiversity and biogeochemical cycles, while meta-studies of socioeconomic consequences are rare. Land use change processes and land use change impacts are generally addressed in isolation, while only few studies considered trajectories of drivers through changes to their impacts and their potential feedbacks. We provide a conceptual framework for linking meta-studies of land use change processes and impacts for the analysis of coupled human–environmental systems. Moreover, we provide suggestions for combining meta-studies of different land use change processes to develop a more integrated theory of land use change, and for combining meta-studies of land use change impacts to identify tradeoffs between different impacts. Land use science can benefit from an improved conceptualization of land use change processes and their impacts, and from new methods that combine meta-study findings to advance our understanding of human–environmental systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatal hyperammonemia secondary to chemotherapy for hematological malignancies or following bone marrow transplantation has been described in few patients so far. In these, the pathogenesis of hyperammonemia remained unclear and was suggested to be multifactorial. We observed severe hyperammonemia (maximum 475 μmol/L) in a 2-year-old male patient, who underwent high-dose chemotherapy with carboplatin, etoposide and melphalan, and autologous hematopoietic stem cell transplantation for a neuroblastoma stage IV. Despite intensive care treatment, hyperammonemia persisted and the patient died due to cerebral edema. The biochemical profile with elevations of ammonia and glutamine (maximum 1757 μmol/L) suggested urea cycle dysfunction. In liver homogenates, enzymatic activity and protein expression of the urea cycle enzyme carbamoyl phosphate synthetase 1 (CPS1) were virtually absent. However, no mutation was found in CPS1 cDNA from liver and CPS1 mRNA expression was only slightly decreased. We therefore hypothesized that the acute onset of hyperammonemia was due to an acquired, chemotherapy-induced (posttranscriptional) CPS1 deficiency. This was further supported by in vitro experiments in HepG2 cells treated with carboplatin and etoposide showing a dose-dependent decrease in CPS1 protein expression. Due to severe hyperlactatemia, we analysed oxidative phosphorylation complexes in liver tissue and found reduced activities of complexes I and V, which suggested a more general mitochondrial dysfunction. This study adds to the understanding of chemotherapy-induced hyperammonemia as drug-induced CPS1 deficiency is suggested. Moreover, we highlight the need for urgent diagnostic and therapeutic strategies addressing a possible secondary urea cycle failure in future patients with hyperammonemia during chemotherapy and stem cell transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maternal thromboembolism and a spectrum of placenta-mediated complications including the pre-eclampsia syndromes, fetal growth restriction, fetal loss, and abruption manifest a shared etiopathogenesis and predisposing risk factors. Furthermore, these maternal and fetal complications are often linked to subsequent maternal health consequences that comprise the metabolic syndrome, namely, thromboembolism, chronic hypertension, and type II diabetes. Traditionally, several lines of evidence have linked vasoconstriction, excessive thrombosis and inflammation, and impaired trophoblast invasion at the uteroplacental interface as hallmark features of the placental complications. "Omic" technologies and biomarker development have been largely based upon advances in vascular biology, improved understanding of the molecular basis and biochemical pathways responsible for the clinically relevant diseases, and increasingly robust large cohort and/or registry based studies. Advances in understanding of innate and adaptive immunity appear to play an important role in several pregnancy complications. Strategies aimed at improving prediction of these pregnancy complications are often incorporating hemodynamic blood flow data using non-invasive imaging technologies of the utero-placental and maternal circulations early in pregnancy. Some evidence suggests that a multiple marker approach will yield the best performing prediction tools, which may then in turn offer the possibility of early intervention to prevent or ameliorate these pregnancy complications. Prediction of maternal cardiovascular and non-cardiovascular consequences following pregnancy represents an important area of future research, which may have significant public health consequences not only for cardiovascular disease, but also for a variety of other disorders, such as autoimmune and neurodegenerative diseases.