21 resultados para Sacral Colpopexy
Resumo:
Background: Percutaneous iliosacral screw placement following pelvic trauma is a very demanding technique involving a high rate of screw malpositions possibly associated with the risk of neurological damage or inadequate stability. In the conventional technique, the screw’s correct entry point and the small target corridor for the iliosacral screw may be difficult to visualise using an image intensifier. 2D and 3D navigation techniques may therefore be helpful tools. The aim of this multicentre study was to evaluate the intra- and postoperative complications after percutaneous screw implantation by classifying the fractures using data from a prospective pelvic trauma registry. The a priori hypothesis was that the navigation techniques have lower rates of intraoperative and postoperative complications. Methods: This study is based on data from the prospective pelvic trauma registry introduced by the German Society of Traumatology and the German Section of the AO/ASIF International in 1991. The registry provides data on all patients with pelvic fractures treated between July 2008 and June 2011 at any one of the 23 Level I trauma centres contributing to the registry. Results: A total of 2615 patients were identified. Out of these a further analysis was performed in 597 patients suffering injuries of the SI joint (187 � with surgical interventions) and 597 patients with sacral fractures (334 � with surgical interventions). The rate of intraoperative complications was not significantly different, with 10/114 patients undergoing navigated techniques (8.8%) and 14/239 patients in the conventional group (5.9%) for percutaneous screw implantation (p = 0.4242). Postoperative complications were analysed in 30/114 patients in the navigated group (26.3%) and in 70/239 patients (29.3%) in the conventional group (p = 0.6542). Patients who underwent no surgery had with 66/197 cases (33.5%) a relatively high rate of complications during their hospital stay. The rate of surgically-treated fractures was higher in the group with more unstable Type-C fractures, but the fracture classification had no significant influence on the rate of complications. Discussion: In this prospective multicentre study, the 2D/3D navigation techniques revealed similar results for the rate of intraoperative and postoperative complications compared to the conventional technique. The rate of neurological complications was significantly higher in the navigated group.
Resumo:
BACKGROUND Pressure ulcers are associated with severe impairment for the patients and high economic load. With this study we wanted to gain more insight to the skin perfusion dynamics due to external loading. Furthermore, we evaluated the effect of different types of pressure relief mattresses. METHODS A total of 25 healthy volunteers were enrolled in the study. Perfusion dynamics of the sacral and the heel area were assessed using the O2C-device, which combines a laser light, to determine blood flow, and white light to determine the relative amount of hemoglobin. Three mattresses were evaluated compared to a hard surface: a standard hospital foam mattress bed, a visco-elastic foam mattress, and an air-fluidized bed. RESULTS In the heel area, only the air-fluidized bed was able to maintain the blood circulation (mean blood flow of 13.6 ± 6 versus 3.9 ± 3 AU and mean relative amount of hemoglobin of 44.0 ± 14 versus 32.7 ± 12 AU.) In the sacral area, all used mattresses revealed an improvement of blood circulation compared to the hard surface. CONCLUSION The results of this study form a more precise pattern of perfusion changes due to external loading on various pressure relief mattresses. This knowledge may reduce the incidence of pressure ulcers and may be an influencing factor in pressure relief mattress selection.
Resumo:
OBJECT The etiology of chronic subdural hematoma (CSDH) in nongeriatric patients (≤ 60 years old) often remains unclear. The primary objective of this study was to identify spinal CSF leaks in young patients, after formulating the hypothesis that spinal CSF leaks are causally related to CSDH. METHODS All consecutive patients 60 years of age or younger who underwent operations for CSDH between September 2009 and April 2011 at Bern University Hospital were included in this prospective cohort study. The patient workup included an extended search for a spinal CSF leak using a systematic algorithm: MRI of the spinal axis with or without intrathecal contrast application, myelography/fluoroscopy, and postmyelography CT. Spinal pathologies were classified according to direct proof of CSF outflow from the intrathecal to the extrathecal space, presence of extrathecal fluid accumulation, presence of spinal meningeal cysts, or no pathological findings. The primary outcome was proof of a CSF leak. RESULTS Twenty-seven patients, with a mean age of 49.6 ± 9.2 years, underwent operations for CSDH. Hematomas were unilateral in 20 patients and bilateral in 7 patients. In 7 (25.9%) of 27 patients, spinal CSF leakage was proven, in 9 patients (33.3%) spinal meningeal cysts in the cervicothoracic region were found, and 3 patients (11.1%) had spinal cysts in the sacral region. The remaining 8 patients (29.6%) showed no pathological findings. CONCLUSIONS The direct proof of spinal CSF leakage in 25.9% of patients suggests that spinal CSF leaks may be a frequent cause of nongeriatric CSDH.
Resumo:
Twenty-eight feline pelves (56 hemipelves) were examined in order to identify the location for optimal sacroiliac screw placement in sacroiliac fracture-luxation repair. A drill hole was started on the median plane of the hemipelvis in the centre of the body of the first sacral segment until it penetrated the lateral cortex of the ilial wing, thus providing optimal drill hole placement. The position of the drill hole on the articular surface of the sacral wing and on the lateral surface of the ilial wing was measured. The distance of the drill hole from the cranial margin of the sacral wing was 51% of sacral wing length, just cranial to the crescent shaped hyaline cartilage. The distance from the dorsal margin was 47% of sacral wing height. The drill bit direction has to be adjusted to the cranio-caudal inclination (range 10° to 29°) and dorso-ventral inclination (range 2° to 25°) of the sacral wing. A notch in the cranial edge of the sacral wing was present, with variable position, in 34% of the specimens and is consequently not a useful landmark for sacroiliac screw placement. The drill hole on the lateral surface of the ilium was located in craniocaudal direction at a distance of 69% of sacral tuber length, measured from the cranial dorsal iliac spine. The dorso-ventral position of the drill hole was at a distance of 52% of ilial wing height measured from the sacral tuber. The ventral gluteal line, present in 93% of the cases, is a useful landmark to locate optimal screw hole position on the ilial wing.
Resumo:
PURPOSE To enhance the diminished screw purchase in cancellous, osteoporotic bone following the fixation of posterior pelvic ring injuries by iliosacral screws an increased bone-implant contact area using modificated screws, techniques or bone cement may become necessary. The aim of the study was to identify sites within the pathway of iliosacral screws requiring modifications of the local bone or the design of instrumentations placed at this site. MATERIALS AND METHODS The breakaway torque was measured mechanically at the iliosacral joint ("ISJ"), the sacral lateral mass ("SLM") and the center of the S1 ("CS1"), at a superior and an inferior site under fluoroscopic control on five human cadaveric specimens (3 female; mean age 87 years, range: 76-99) using the DensiProbe™Spine device. RESULTS The measured median (range) breakaway torque was 0.63 Nm (0.31-2.52) at the "iliosacral joint", 0.14 Nm (0.05-1.22) at the "sacral lateral mass", 0.57 Nm (0.05-1.42) at the "S1 center." The "sacral lateral mass" breakaway torque was lower than compared to that at the "iliosacral joint" (p < .001) or "S1 center" (p < .001). The median (range) breakaway torque measured at all superior measurement points was 0.52 Nm (0.10-2.52), and 0.48 Nm (0.05-1.18) at all inferior sites. The observed difference was statistically significant (p < .05). CONCLUSIONS The lateral mass of the sacrum provides the lowest bone quality for implant anchorage. Iliosacral screws should be placed as superior as safely possible, should bridge the iliosacral joint and may allow for cement application at the lateral mass of the sacrum through perforations.
Resumo:
INTRODUCTION In iliosacral screw fixation, the dimensions of solely intraosseous (secure) pathways, perpendicular to the ilio-sacral articulation (optimal) with corresponding entry (EP) and aiming points (AP) on lateral fluoroscopic projections, and the factors (demographic, anatomic) influencing these have not yet been described. METHODS In 100 CTs of normal pelvises, the height and width of the secure and optimal pathways were measured on axial and coronal views bilaterally (total measurements: n=200). Corresponding EP and AP were defined as either the location of the screw head or tip at the crossing of lateral innominate bones' cortices (EP) and sacral midlines (AP) within the centre of the pathway, respectively. EP and AP were transferred to the sagittal pelvic view using a coordinate system with the zero-point in the centre of the posterior cortex of the S1 vertebral body (x-axis parallel to upper S1 endplate). Distances are expressed in relation to the anteroposterior distance of the S1 upper endplate (in %). The influence of demographic (age, gender, side) and/or anatomic (PIA=pelvic incidence angle; TCA=transversal curvature angle, PID-Index=pelvic incidence distance-index; USW=unilateral sacral width-index) parameters on pathway dimensions and positions of EP and AP were assessed (multivariate analysis). RESULTS The width, height or both factors of the pathways were at least 7mm or more in 32% and 53% or 20%, respectively. The EP was on average 14±24% behind the centre of the posterior S1 cortex and 41±14% below it. The AP was on average 53±7% in the front of the centre of the posterior S1 cortex and 11±7% above it. PIA influenced the width, TCA, PID-Index the height of the pathways. PIA, PID-Index, and USW-Index significantly influenced EP and AP. Age, gender, and TCA significantly influenced EP. CONCLUSION Secure and optimal placement of screws of at least 7mm in diameter will be unfeasible in the majority of patients. Thoughtful preoperative planning of screw placement on CT scans is advisable to identify secure pathways with an optimal direction. For this purpose, the presented methodology of determining and transferring EPs and APs of corresponding pathways to the sagittal pelvic view using a coordinate system may be useful.