25 resultados para SITE-SELECTIVE EXCITATION
Resumo:
Ligands of the benzodiazepine binding site of the GABA(A) receptor come in three flavors: positive allosteric modulators, negative allosteric modulators and antagonists all of which can bind with high affinity. The GABA(A) receptor is a pentameric protein which forms a chloride selective ion channel and ligands of the benzodiazepine binding site stabilize three different conformations of this protein. Classical benzodiazepines exert a positive allosteric effect by increasing the apparent affinity of channel opening by the agonist γ-aminobutyric acid (GABA). We concentrate here on the major adult isoform, the α(1)β(2)γ(2) GABA(A) receptor. The classical binding pocket for benzodiazepines is located in a subunit cleft between α(1) and γ(2) subunits in a position homologous to the agonist binding site for GABA that is located between β(2) and α(1) subunits. We review here approaches to this picture. In particular, point mutations were performed in combination with subsequent analysis of the expressed mutant proteins using either electrophysiological techniques or radioactive ligand binding assays. The predictive power of these methods is assessed by comparing the results with the predictions that can be made on the basis of the recently published crystal structure of the acetylcholine binding protein that shows homology to the N-terminal, extracellular domain of the GABA(A) receptor. In addition, we review an approach to the question of how the benzodiazepine ligands are positioned in their binding pocket. We also discuss a newly postulated modulatory site for benzodiazepines at the α(1)/β(2) subunit interface, homologous to the classical benzodiazepine binding pocket.
Resumo:
Classical benzodiazepines, such as diazepam, interact with α(x)β(2)γ(2) GABA(A) receptors, x = 1, 2, 3, 5 and modulate their function. Modulation of different receptor isoforms probably results in selective behavioural effects as sedation and anxiolysis. Knowledge of differences in the structure of the binding pocket in different receptor isoforms is of interest for the generation of isoform-specific ligands. We studied here the interaction of the covalently reacting diazepam analogue 3-NCS with α(1)S204Cβ(2)γ(2), α(1)S205Cβ(2)γ(2) and α(1)T206Cβ(2)γ(2) and with receptors containing the homologous mutations in α(2)β(2)γ(2), α(3)β(2)γ(2), α(5)β(1/2)γ(2) and α(6)β(2)γ(2). The interaction was studied using radioactive ligand binding and at the functional level using electrophysiological techniques. Both strategies gave overlapping results. Our data allow conclusions about the relative apposition of α(1)S204Cβ(2)γ(2), α(1)S205Cβ(2)γ(2) and α(1)T206Cβ(2)γ(2) and homologous positions in α(2), α(3), α(5) and α(6) with C-atom adjacent to the keto-group in diazepam. Together with similar data on the C-atom carrying Cl in diazepam, they indicate that the architecture of the binding site for benzodiazepines differs in each GABA(A) receptor isoform α(1)β(2)γ(2), α(2)β(2)γ(2), α(3)β(2)γ(2), α(5)β(1/2)γ(2) and α(6)β(2)γ(2).
Resumo:
The migration of polymorphonuclear granulocytes (PMN) into the brain parenchyma and release of their abundant proteases are considered the main causes of neuronal cell death and reperfusion injury following ischemia. Yet, therapies targeting PMN egress have been largely ineffective. To address this discrepancy we investigated the temporo-spatial localization of PMNs early after transient ischemia in a murine transient middle cerebral artery occlusion (tMCAO) model and human stroke specimens. Using specific markers that distinguish PMN (Ly6G) from monocytes/macrophages (Ly6C) and that define the cellular and basement membrane boundaries of the neurovascular unit (NVU), histology and confocal microscopy revealed that virtually no PMNs entered the infarcted CNS parenchyma. Regardless of tMCAO duration, PMNs were mainly restricted to luminal surfaces or perivascular spaces of cerebral vessels. Vascular PMN accumulation showed no spatial correlation with increased vessel permeability, enhanced expression of endothelial cell adhesion molecules, platelet aggregation or release of neutrophil extracellular traps. Live cell imaging studies confirmed that oxygen and glucose deprivation followed by reoxygenation fail to induce PMN migration across a brain endothelial monolayer under flow conditions in vitro. The absence of PMN infiltration in infarcted brain tissues was corroborated in 25 human stroke specimens collected at early time points after infarction. Our observations identify the NVU rather than the brain parenchyma as the site of PMN action after CNS ischemia and suggest reappraisal of targets for therapies to reduce reperfusion injury after stroke.
Resumo:
OBJECTIVE: To describe the use of an endobronchial blocker (EBB) and to perform selective ventilation during pulmonary lobe resection via thoracotomy in a dog and report its accidental stapling in the resection site. STUDY DESIGN: Clinical case report. ANIMAL: One female dog with a suspected abscess or neoplasia of the right caudal pulmonary lobe. METHODS: One-lung ventilation was performed using a wire-guided EBB to seal the contaminated parenchyma and facilitate surgical access. The affected lung parenchyma was resected and the resection site was closed with staples. RESULTS: Lobar resection was performed successfully, but the loop of the EBB guide wire was inadvertently entrapped in the staple line of the lobectomy. Staples were removed to release the wire loop, and the resulting air leak caused loss of ventilation control until the parenchyma was re-sealed. CONCLUSIONS: We recommend removing the wire guide associate with the EBB after successful lung separation to avoid accidents that could have life-threatening consequences if not recognized. CLINICAL RELEVANCE: One-lung ventilation is useful to isolate healthy parenchyma from diseased parenchyma during lobectomy. Anesthesiologists and surgeons need to be aware of the potential complications associated with use of EBB.
Resumo:
BACKGROUND: The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors. METHODS: In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay. RESULTS: Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls. CONCLUSION: Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases.
Resumo:
Human leishmaniasis is a major public health problem in many countries, but chemotherapy is in an unsatisfactory state. Leishmania major phosphodiesterases (LmjPDEs) have been shown to play important roles in cell proliferation and apoptosis of the parasite. Thus LmjPDE inhibitors may potentially represent a novel class of drugs for the treatment of leishmaniasis. Reported here are the kinetic characterization of the LmjPDEB1 catalytic domain and its crystal structure as a complex with 3-isobutyl-1-methylxanthine (IBMX) at 1.55 A resolution. The structure of LmjPDEB1 is similar to that of human PDEs. IBMX stacks against the conserved phenylalanine and forms a hydrogen bond with the invariant glutamine, in a pattern common to most inhibitors bound to human PDEs. However, an extensive structural comparison reveals subtle, but significant differences between the active sites of LmjPDEB1 and human PDEs. In addition, a pocket next to the inhibitor binding site is found to be unique to LmjPDEB1. This pocket is isolated by two gating residues in human PDE families, but constitutes a natural expansion of the inhibitor binding pocket in LmjPDEB1. The structure particularity might be useful for the development of parasite-selective inhibitors for the treatment of leishmaniasis.
Resumo:
OBJECT: Fat suppressed 3D steady-state free precession (SSFP) sequences are of special interest in cartilage imaging due to their short repetition time in combination with high signal-to-noise ratio. At low-to-high fields (1.5-3.0 T), spectral spatial (spsp) radio frequency (RF) pulses perform superiorly over conventional saturation of the fat signal (FATSAT pulses). However, ultra-high fields (7.0 T and more) may offer alternative fat suppression techniques as a result of the increased chemical shift. MATERIALS AND METHODS: Application of a single, frequency selective, RF pulse is compared to spsp excitation for water (or fat) selective imaging at 7.0 T. RESULTS: For SSFP, application of a single frequency selective RF pulse for selective water or fat excitation performs beneficially over the commonly applied spsp RF pulses. In addition to the overall improved fat suppression, the application of single RF pulses leads to decreased power depositions, still representing one of the major restrictions in the design and application of many pulse sequences at ultra-high fields. CONCLUSION: The ease of applicability and implementation of single frequency selective RF pulses at ultra-high-fields might be of great benefit for a vast number of applications where fat suppression is desirable or fat-water separation is needed for quantification purposes.
Resumo:
BACKGROUND: Eosinophil differentiation, activation, and survival are largely regulated by IL-5. IL-5-mediated transmembrane signal transduction involves both Lyn-mitogen-activated protein kinases and Janus kinase 2-signal transducer and activator of transcription pathways. OBJECTIVE: We sought to determine whether additional signaling molecules/pathways are critically involved in IL-5-mediated eosinophil survival. METHODS: Eosinophil survival and apoptosis were measured in the presence and absence of IL-5 and defined pharmacologic inhibitors in vitro. The specific role of the serine/threonine kinase proviral integration site for Moloney murine leukemia virus (Pim) 1 was tested by using HIV-transactivator of transcription fusion proteins containing wild-type Pim-1 or a dominant-negative form of Pim-1. The expression of Pim-1 in eosinophils was analyzed by means of immunoblotting and immunofluorescence. RESULTS: Although pharmacologic inhibition of phosphatidylinositol-3 kinase (PI3K) by LY294002, wortmannin, or the selective PI3K p110delta isoform inhibitor IC87114 was successful in each case, only LY294002 blocked increased IL-5-mediated eosinophil survival. This suggested that LY294002 inhibited another kinase that is critically involved in this process in addition to PI3K. Indeed, Pim-1 was rapidly and strongly expressed in eosinophils after IL-5 stimulation in vitro and readily detected in eosinophils under inflammatory conditions in vivo. Moreover, by using specific protein transfer, we identified Pim-1 as a critical element in IL-5-mediated antiapoptotic signaling in eosinophils. CONCLUSIONS: Pim-1, but not PI3K, plays a major role in IL-5-mediated antiapoptotic signaling in eosinophils.
Resumo:
GABAA receptors are the major inhibitory neurotransmitter receptors in the brain and are the target for many clinically important drugs such as the benzodiazepines. Benzodiazepines act at the high-affinity binding site at the α+/γ- subunit interface. Previously, an additional low affinity binding site for diazepam located in the transmembrane (TM) domain has been described. The compound SJM-3 was recently identified in a prospective screening of ligands for the benzodiazepine binding site and investigated for its site of action. We determined the binding properties of SJM-3 at GABAA receptors recombinantly expressed in HEK-cells using radioactive ligand binding assays. Impact on function was assessed in Xenopus laevis oocytes with electrophysiological experiments using the two-electrode voltage clamp method. SJM-3 was shown to act as an antagonist at the α+/γ- site. At the same time it strongly potentiated GABA currents via the binding site for diazepam in the transmembrane domain. Mutation of a residue in M2 of the α subunit strongly reduced receptor modulation by SJM-3 and a homologous mutation in the β subunit abolished potentiation. SJM-3 acts as a more efficient modulator than diazepam at the site in the trans-membrane domain. In contrast to low concentrations of benzodiazepines, SJM-3 modulates both synaptic and extrasynaptic receptors. A detailed exploration of the membrane site may provide the basis for the design and identification of subtype-selective modulatory drugs.
Resumo:
Disruption of proteostasis, or protein homeostasis, is often associated with aberrant accumulation of misfolded proteins or protein aggregates. Autophagy offers protection to cells by removing toxic protein aggregates and injured organelles in response to proteotoxic stress. However, the exact mechanism whereby autophagy recognizes and degrades misfolded or aggregated proteins has yet to be elucidated. Mounting evidence demonstrates the selectivity of autophagy, which is mediated through autophagy receptor proteins (e.g. p62/SQSTM1) linking autophagy cargos and autophagosomes. Here we report that proteotoxic stress imposed by the proteasome inhibition or expression of polyglutamine expanded huntingtin (polyQ-Htt) induces p62 phosphorylation at its ubiquitin-association (UBA) domain that regulates its binding to ubiquitinated proteins. We find that autophagy-related kinase ULK1 phosphorylates p62 at a novel phosphorylation site S409 in UBA domain. Interestingly, phosphorylation of p62 by ULK1 does not occur upon nutrient starvation, in spite of its role in canonical autophagy signaling. ULK1 also phosphorylates S405, while S409 phosphorylation critically regulates S405 phosphorylation. We find that S409 phosphorylation destabilizes the UBA dimer interface, and increases binding affinity of p62 to ubiquitin. Furthermore, lack of S409 phosphorylation causes accumulation of p62, aberrant localization of autophagy proteins and inhibition of the clearance of ubiquitinated proteins or polyQ-Htt. Therefore, our data provide mechanistic insights into the regulation of selective autophagy by ULK1 and p62 upon proteotoxic stress. Our study suggests a potential novel drug target in developing autophagy-based therapeutics for the treatment of proteinopathies including Huntington's disease.