41 resultados para S-like to F-like tungsten ions
Resumo:
THP-1 2A9, a subclone of the monocytoid cell line THP-1 and known to be exquisitely sensitive to LPS, was tested for TNF production following triggering by excess doses of TLR ligands. TLR2, TLR4 and TLR5 agonists, but neither TLR3 nor TLR9 agonists, induced TNF production. When used at lower concentrations, priming by calcitriol strongly influenced the sensitivity of cells to LPS and different TLR2 triggers (lipoteichoic acid (LTA), trispalmitoyl-cysteyl-seryl-lysyl-lysyl-lysyl-lysine (Pam3Cys) and peptidoglycan (PGN)). Priming by calcitriol failed to modulate TLR2 and TLR4 mRNA and cell surface expression of these receptors. TNF signals elicited by TLR2 agonists were blocked by the TLR-specific antibody 2392. CD14-specific antibodies showed variable effects. CD14-specific antibodies inhibited TNF induction by LTA. High concentrations partially inhibited TNF induction by Pam3Cys. The same antibodies failed to inhibit TNF induction by PGN. Thus, THP-1 2A9 cells respond by TNF production to some, but not all TLR agonists, and the wide variety of putative TLR2 agonists interact to variable degrees also with other cell-surface-expressed binding sites such as CD14. THP-1 2A9 cells might provide a model by which to investigate in more detail the interaction of pathogen-associated molecular patterns and monocytoid cell-surface-expressed pattern recognition receptors.
Resumo:
Although eosinophils are considered useful in defense mechanisms against parasites, their exact function in innate immunity remains unclear. The aim of this study is to better understand the role of eosinophils within the gastrointestinal immune system. We show here that lipopolysaccharide from Gram-negative bacteria activates interleukin-5 (IL-5)- or interferon-gamma-primed eosinophils to release mitochondrial DNA in a reactive oxygen species-dependent manner, but independent of eosinophil death. Notably, the process of DNA release occurs rapidly in a catapult-like manner--in less than one second. In the extracellular space, the mitochondrial DNA and the granule proteins form extracellular structures able to bind and kill bacteria both in vitro and under inflammatory conditions in vivo. Moreover, after cecal ligation and puncture, Il5-transgenic but not wild-type mice show intestinal eosinophil infiltration and extracellular DNA deposition in association with protection against microbial sepsis. These data suggest a previously undescribed mechanism of eosinophil-mediated innate immune responses that might be crucial for maintaining the intestinal barrier function after inflammation-associated epithelial cell damage, preventing the host from uncontrolled invasion of bacteria.
Resumo:
The B-box motif is the defining feature of the TRIM family of proteins, characterized by a RING finger-B-box-coiled coil tripartite fold. We have elucidated the crystal structure of B-box 2 (B2) from MuRF1, a TRIM protein that supports a wide variety of protein interactions in the sarcomere and regulates the trophic state of striated muscle tissue. MuRF1 B2 coordinates two zinc ions through a cross-brace alpha/beta-topology typical of members of the RING finger superfamily. However, it self-associates into dimers with high affinity. The dimerization pattern is mediated by the helical component of this fold and is unique among RING-like folds. This B2 reveals a long shallow groove that encircles the C-terminal metal binding site ZnII and appears as the defining protein-protein interaction feature of this domain. A cluster of conserved hydrophobic residues in this groove and, in particular, a highly conserved aromatic residue (Y133 in MuRF1 B2) is likely to be central to this role. We expect these findings to aid the future exploration of the cellular function and therapeutic potential of MuRF1.
Resumo:
BACKGROUND Periprosthetic infections remain a devastating problem in the field of joint arthroplasty. In the following study, the results of a two-stage treatment protocol for chronic periprosthetic infections using an intraoperatively molded cement prosthesis-like spacer (CPLS) are presented. METHODS Seventy-five patients with chronically infected knee prosthesis received a two-stage revision procedure with the newly developed CPLS between June 2006 and June 2011. Based on the microorganism involved, patients were grouped into either easy to treat (ETT) or difficult to treat (DTT) and treated accordingly. Range of motion (ROM) and the knee society score (KSS) were utilized for functional assessment. RESULTS Mean duration of the CPLS implant in the DTT group was 3.6 months (range 3-5 months) and in the ETT group 1.3 months (range 0.7-2.5 months). Reinfection rates of the final prosthesis were 9.6% in the ETT and 8.3% in the DTT group with no significant difference between both groups regarding ROM or KSS (P = 0.87, 0.64, resp.). CONCLUSION The results show that ETT patients do not necessitate the same treatment protocol as DTT patients to achieve the same goal, emphasizing the need to differentiate between therapeutic regimes. We also highlight the feasibility of CLPS in two-stage protocols.
Resumo:
A Tn916-like transposon (TnFO1) was found in the multiple antibiotic resistant Enterococcus faecalis strain FO1 isolated from a raw milk cheese. In this strain, the tetracycline determinant was localized by DNA-DNA hybridization with a tetM nucleotide probe on the chromosome and on a 30-kb plasmid. The transposon TnFO1 was identified and characterized by DNA-DNA hybridization experiments with the five internal HincII fragments of Tn916. The tetracycline resistance determinant was identified by its complete nucleotide sequence as TetM. Transposon TnFO1 was also detected in its circular form by DNA-DNA hybridization and PCR amplification. Both ends including the joining region of the closed circular transposon TnFO1 were sequenced. TnFO1 could be transferred by conjugation from Enterococcus faecalis into Enterococcus faecalis, Lactococcus lactis subsp. lactis biovar. diacetylactis, Listeria innocua, Leuconostoc mesenteroides and Staphylococcus aureus, and from Lactococcus lactis subsp. lactis biovar. diacetylactis into Listeria innocua. Pulsed-field electrophoresis of genomic DNA from E. faecalis FO1 transconjugants showed that transposon TnFO1 integrated at different sites.