32 resultados para Rye House Plot, 1683.
Resumo:
coefplot plots results from estimation commands or Stata matrices. Results from multiple models or matrices can be combined in a single graph. The default behavior of coefplot is to draw markers for coefficients and horizontal spikes for confidence intervals. However, coefplot can also produce various other types of graphs.
Resumo:
This paper presents a unique 517-yr long documentary data-based reconstruction of spring-summer (MAMJJ) temperatures for northern Switzerland and southwestern Germany from 1454 to 1970. It is composed of 25 partial series of winter grain (secale cereale) harvest starting dates (WGHD) that are partly based on harvest related bookkeeping of institutions (hospitals, municipalities), partly on (early) phenological observations. The resulting main Basel WGHD series was homogenised with regard to dating style, data type and altitude. The calibration and verification approach was applied using the homogenous HISTALP temperature series from 1774–1824 for calibration (r = 0.78) and from 1920–1970 for verification (r = 0.75). The latter result even suffers from the weak data base available for 1870– 1950. Temperature reconstructions based on WGHD are more influenced by spring temperatures than those based on grape harvest dates (GHD), because rye in contrast to vines already begins to grow as soon as sunlight brings the plant to above freezing. The earliest and latest harvest dates were checked for consistency with narrative documentary weather reports. Comparisons with other European documentarybased GHD and WGHD temperature reconstructions generally reveal significant correlations decreasing with the distance from Switzerland. The new Basel WGHD series shows better skills in representing highly climate change sensitive variations of Swiss Alpine glaciers than available GHD series.
Resumo:
addplot adds twoway plot objects to an existing twoway graph. This is useful if you want to add additional objects such as titles or extra data points to a twoway graph after it has been created. Most of what addplot can do, can also be done by rerunning the original graph command including additional options or plot statements. addplot, however, might be useful if you have to modify a graph for which you cannot rerun the original command, for example, because you only have the graph file but not the data that were used to create the graph. Furthermore, addplot can do certain things that would be difficult to achieve in a single graph command (e.g. customizing individual subgraphs within a by-graph). addplot also provides a substitute for some of the functionality of the graph editor.
Resumo:
The paper will focus on basic ways of communication between the actors in the house and home and their direct social environments (esp. neighbourhood) during the early modern period. Such ways of communication were established in and through work relations, sociability, social control and certain liminal rites. So far underestimated, the neighbourhood was both helpful and inevitable to keep house and household running. A typical aspect of the practice of communication was the importance of repetitive performative events in everyday life. In order to establish and maintain social relations, the honour of the ‘house’ as such and fundamental roles like housefather and housemother had to be performed under the eyes of neighbours and other actors. Thus, empirical evidence reveals the house and home as a specific kind of stage. In contrast to the outdated concept of ‘das ganze Haus’ (the whole house) by Otto Brunner and also a reduced socioeconomic understanding of household, the openness of the house proves to be a highly relevant feature of early modern society. This openness refers to accessibility, visibility and control. The paper will explain the proposed concept and analyse concrete examples from work and wedding.
Resumo:
Vorstellung des Programms des Sinergiaprojekts
Resumo:
Infectious disease outbreaks can be devastating because of their sudden occurrence, as well as the complexity of monitoring and controlling them. Outbreaks in wildlife are even more challenging to observe and describe, especially when small animals or secretive species are involved. Modeling such infectious disease events is relevant to investigating their dynamics and is critical for decision makers to accomplish outbreak management. Tularemia, caused by the bacterium Francisella tularensis, is a potentially lethal zoonosis. Of the few animal outbreaks that have been reported in the literature, only those affecting zoo animals have been closely monitored. Here, we report the first estimation of the basic reproduction number R0 of an outbreak in wildlife caused by F. tularensis using quantitative modeling based on a susceptible-infected-recovered framework. We applied that model to data collected during an extensive investigation of an outbreak of tularemia caused by F. tularensis subsp. holarctica (also designated as type B) in a closely monitored, free-roaming house mouse (Mus musculus domesticus) population in Switzerland. Based on our model and assumptions, the best estimated basic reproduction number R0 of the current outbreak is 1.33. Our results suggest that tularemia can cause severe outbreaks in small rodents. We also concluded that the outbreak self-exhausted in approximately three months without administrating antibiotics.