92 resultados para Rigid registration


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteoarticular allograft transplantation is a popular treatment method in wide surgical resections with large defects. For this reason hospitals are building bone data banks. Performing the optimal allograft selection on bone banks is crucial to the surgical outcome and patient recovery. However, current approaches are very time consuming hindering an efficient selection. We present an automatic method based on registration of femur bones to overcome this limitation. We introduce a new regularization term for the log-domain demons algorithm. This term replaces the standard Gaussian smoothing with a femur specific polyaffine model. The polyaffine femur model is constructed with two affine (femoral head and condyles) and one rigid (shaft) transformation. Our main contribution in this paper is to show that the demons algorithm can be improved in specific cases with an appropriate model. We are not trying to find the most optimal polyaffine model of the femur, but the simplest model with a minimal number of parameters. There is no need to optimize for different number of regions, boundaries and choice of weights, since this fine tuning will be done automatically by a final demons relaxation step with Gaussian smoothing. The newly developed synthesis approach provides a clear anatomically motivated modeling contribution through the specific three component transformation model, and clearly shows a performance improvement (in terms of anatomical meaningful correspondences) on 146 CT images of femurs compared to a standard multiresolution demons. In addition, this simple model improves the robustness of the demons while preserving its accuracy. The ground truth are manual measurements performed by medical experts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Craniosynostosis consists of a premature fusion of the sutures in an infant skull that restricts skull and brain growth. During the last decades, there has been a rapid increase of fundamentally diverse surgical treatment methods. At present, the surgical outcome has been assessed using global variables such as cephalic index, head circumference, and intracranial volume. However, these variables have failed in describing the local deformations and morphological changes that may have a role in the neurologic disorders observed in the patients. This report describes a rigid image registration-based method to evaluate outcomes of craniosynostosis surgical treatments, local quantification of head growth, and indirect intracranial volume change measurements. The developed semiautomatic analysis method was applied to computed tomography data sets of a 5-month-old boy with sagittal craniosynostosis who underwent expansion of the posterior skull with cranioplasty. Quantification of the local changes between pre- and postoperative images was quantified by mapping the minimum distance of individual points from the preoperative to the postoperative surface meshes, and indirect intracranial volume changes were estimated. The proposed methodology can provide the surgeon a tool for the quantitative evaluation of surgical procedures and detection of abnormalities of the infant skull and its development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image-guided microsurgery requires accuracies an order of magnitude higher than today's navigation systems provide. A critical step toward the achievement of such low-error requirements is a highly accurate and verified patient-to-image registration. With the aim of reducing target registration error to a level that would facilitate the use of image-guided robotic microsurgery on the rigid anatomy of the head, we have developed a semiautomatic fiducial detection technique. Automatic force-controlled localization of fiducials on the patient is achieved through the implementation of a robotic-controlled tactile search within the head of a standard surgical screw. Precise detection of the corresponding fiducials in the image data is realized using an automated model-based matching algorithm on high-resolution, isometric cone beam CT images. Verification of the registration technique on phantoms demonstrated that through the elimination of user variability, clinically relevant target registration errors of approximately 0.1 mm could be achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the issue of matching statistical and non-rigid shapes, and introduces an Expectation Conditional Maximization-based deformable shape registration (ECM-DSR) algorithm. Similar to previous works, we cast the statistical and non-rigid shape registration problem into a missing data framework and handle the unknown correspondences with Gaussian Mixture Models (GMM). The registration problem is then solved by fitting the GMM centroids to the data. But unlike previous works where equal isotropic covariances are used, our new algorithm uses heteroscedastic covariances whose values are iteratively estimated from the data. A previously introduced virtual observation concept is adopted here to simplify the estimation of the registration parameters. Based on this concept, we derive closed-form solutions to estimate parameters for statistical or non-rigid shape registrations in each iteration. Our experiments conducted on synthesized and real data demonstrate that the ECM-DSR algorithm has various advantages over existing algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: To investigate if non-rigid image-registration reduces motion artifacts in triggered and non-triggered diffusion tensor imaging (DTI) of native kidneys. A secondary aim was to determine, if improvements through registration allow for omitting respiratory-triggering. METHODS: Twenty volunteers underwent coronal DTI of the kidneys with nine b-values (10-700 s/mm2 ) at 3 Tesla. Image-registration was performed using a multimodal nonrigid registration algorithm. Data processing yielded the apparent diffusion coefficient (ADC), the contribution of perfusion (FP ), and the fractional anisotropy (FA). For comparison of the data stability, the root mean square error (RMSE) of the fitting and the standard deviations within the regions of interest (SDROI ) were evaluated. RESULTS: RMSEs decreased significantly after registration for triggered and also for non-triggered scans (P < 0.05). SDROI for ADC, FA, and FP were significantly lower after registration in both medulla and cortex of triggered scans (P < 0.01). Similarly the SDROI of FA and FP decreased significantly in non-triggered scans after registration (P < 0.05). RMSEs were significantly lower in triggered than in non-triggered scans, both with and without registration (P < 0.05). CONCLUSION: Respiratory motion correction by registration of individual echo-planar images leads to clearly reduced signal variations in renal DTI for both triggered and particularly non-triggered scans. Secondarily, the results suggest that respiratory-triggering still seems advantageous.J. Magn. Reson. Imaging 2014. (c) 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate placement of lesions is crucial for the effectiveness and safety of a retinal laser photocoagulation treatment. Computer assistance provides the capability for improvements to treatment accuracy and execution time. The idea is to use video frames acquired from a scanning digital ophthalmoscope (SDO) to compensate for retinal motion during laser treatment. This paper presents a method for the multimodal registration of the initial frame from an SDO retinal video sequence to a retinal composite image, which may contain a treatment plan. The retinal registration procedure comprises the following steps: 1) detection of vessel centerline points and identification of the optic disc; 2) prealignment of the video frame and the composite image based on optic disc parameters; and 3) iterative matching of the detected vessel centerline points in expanding matching regions. This registration algorithm was designed for the initialization of a real-time registration procedure that registers the subsequent video frames to the composite image. The algorithm demonstrated its capability to register various pairs of SDO video frames and composite images acquired from patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a variational approach for multimodal image registration based on the diffeomorphic demons algorithm. Diffeomorphic demons has proven to be a robust and efficient way for intensity-based image registration. However, the main drawback is that it cannot deal with multiple modalities. We propose to replace the standard demons similarity metric (image intensity differences) by point-wise mutual information (PMI) in the energy function. By comparing the accuracy between our PMI based diffeomorphic demons and the B-Spline based free-form deformation approach (FFD) on simulated deformations, we show the proposed algorithm performs significantly better.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Craniosynostosis consists of a premature fusion of the sutures in an infant skull, which restricts the skull and brain growth. During the last decades there has been a rapid increase of fundamentally diverse surgical treatment methods. At present, the surgical outcome has been assessed using global variables such as cephalic index, head circumerence and intracranial volume. However, the variables have failed in describing the local deformations and morphological changes, which are proposed to more likely induce neurological disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose Accurate three-dimensional (3D) models of lumbar vertebrae can enable image-based 3D kinematic analysis. The common approach to derive 3D models is by direct segmentation of CT or MRI datasets. However, these have the disadvantages that they are expensive, timeconsuming and/or induce high-radiation doses to the patient. In this study, we present a technique to automatically reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image. Methods Our technique is based on a hybrid 2D/3D deformable registration strategy combining a landmark-to-ray registration with a statistical shape model-based 2D/3D reconstruction scheme. Fig. 1 shows different stages of the reconstruction process. Four cadaveric lumbar spine segments (total twelve lumbar vertebrae) were used to validate the technique. To evaluate the reconstruction accuracy, the surface models reconstructed from the lateral fluoroscopic images were compared to the associated ground truth data derived from a 3D CT-scan reconstruction technique. For each case, a surface-based matching was first used to recover the scale and the rigid transformation between the reconstructed surface model Results Our technique could successfully reconstruct 3D surface models of all twelve vertebrae. After recovering the scale and the rigid transformation between the reconstructed surface models and the ground truth models, the average error of the 2D/3D surface model reconstruction over the twelve lumbar vertebrae was found to be 1.0 mm. The errors of reconstructing surface models of all twelve vertebrae are shown in Fig. 2. It was found that the mean errors of the reconstructed surface models in comparison to their associated ground truths after iterative scaled rigid registrations ranged from 0.7 mm to 1.3 mm and the rootmean squared (RMS) errors ranged from 1.0 mm to 1.7 mm. The average mean reconstruction error was found to be 1.0 mm. Conclusion An accurate, scaled 3D reconstruction of the lumbar vertebra can be obtained from a single lateral fluoroscopic image using a statistical shape model based 2D/3D reconstruction technique. Future work will focus on applying the reconstructed model for 3D kinematic analysis of lumbar vertebrae, an extension of our previously-reported imagebased kinematic analysis. The developed method also has potential applications in surgical planning and navigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) was a prospective, randomized, double-blinded, placebo-controlled, phase II trial of alteplase between 3 and 6 hours after stroke onset. The primary outcome of infarct growth attenuation on MRI with alteplase in mismatch patients was negative when mismatch volumes were assessed volumetrically, without coregistration, which underestimates mismatch volumes. We hypothesized that assessing the extent of mismatch by coregistration of perfusion and diffusion MRI maps may more accurately allow the effects of alteplase vs placebo to be evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm for the real-time registration of a retinal video sequence captured with a scanning digital ophthalmoscope (SDO) to a retinal composite image is presented. This method is designed for a computer-assisted retinal laser photocoagulation system to compensate for retinal motion and hence enhance the accuracy, speed, and patient safety of retinal laser treatments. The procedure combines intensity and feature-based registration techniques. For the registration of an individual frame, the translational frame-to-frame motion between preceding and current frame is detected by normalized cross correlation. Next, vessel points on the current video frame are identified and an initial transformation estimate is constructed from the calculated translation vector and the quadratic registration matrix of the previous frame. The vessel points are then iteratively matched to the segmented vessel centerline of the composite image to refine the initial transformation and register the video frame to the composite image. Criteria for image quality and algorithm convergence are introduced, which assess the exclusion of single frames from the registration process and enable a loss of tracking signal if necessary. The algorithm was successfully applied to ten different video sequences recorded from patients. It revealed an average accuracy of 2.47 ± 2.0 pixels (∼23.2 ± 18.8 μm) for 2764 evaluated video frames and demonstrated that it meets the clinical requirements.