160 resultados para Respiratory Effort


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Direct immunofluorescence assays (DFA) are a rapid and inexpensive method for the detection of respiratory viruses and may therefore be used for surveillance. Few epidemiological studies have been published based solely on DFA and none included respiratory picornaviruses and human metapneumovirus (hMPV). We wished to evaluate the use of DFA for epidemiological studies with a long-term observation of respiratory viruses that includes both respiratory picornaviruses and hMPV. Methods Since 1998 all children hospitalized with respiratory illness at the University Hospital Bern have been screened with DFA for common respiratory viruses including adenovirus, respiratory syncytial virus (RSV), influenza A and B, and parainfluenza virus 1-3. In 2006 assays for respiratory picornaviruses and hMPV were added. Here we describe the epidemiological pattern for these respiratory viruses detected by DFA in 10'629 nasopharyngeal aspirates collected from 8'285 patients during a 12-year period (1998-2010). Results Addition of assays for respiratory picornaviruses and hMPV raised the proportion of positive DFA results from 35% to 58% (p < 0.0001). Respiratory picornaviruses were the most common viruses detected among patients ≥1 year old. The seasonal patterns and age distribution for the studied viruses agreed well with those reported in the literature. In 2010, an hMPV epidemic of unexpected size was observed. Conclusions DFA is a valid, rapid, flexible and inexpensive method. The addition of assays for respiratory picornaviruses and hMPV broadens its range of viral detection. DFA is, even in the "PCR era", a particularly adapted method for the long term surveillance of respiratory viruses in a pediatric population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The airway epithelium acts as a frontline defense against respiratory viruses, not only as a physical barrier and through the mucociliary apparatus but also through its immunological functions. It initiates multiple innate and adaptive immune mechanisms which are crucial for efficient antiviral responses. The interaction between respiratory viruses and airway epithelial cells results in production of antiviral substances, including type I and III interferons, lactoferrin, β-defensins, and nitric oxide, and also in production of cytokines and chemokines, which recruit inflammatory cells and influence adaptive immunity. These defense mechanisms usually result in rapid virus clearance. However, respiratory viruses elaborate strategies to evade antiviral mechanisms and immune responses. They may disrupt epithelial integrity through cytotoxic effects, increasing paracellular permeability and damaging epithelial repair mechanisms. In addition, they can interfere with immune responses by blocking interferon pathways and by subverting protective inflammatory responses toward detrimental ones. Finally, by inducing overt mucus secretion and mucostasis and by paving the way for bacterial infections, they favor lung damage and further impair host antiviral mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is aimed at addressing the current state of the art in epidemiology, pathophysiology, diagnostic procedures and treatment options for appropriate management of obstructive sleep apnea (OSA) in cardiovascular (particularly hypertensive) patients, as well as for the management of cardiovascular diseases (particularly arterial hypertension) in OSA patients. The present document is the result of the work done by a panel of experts participating in the European Union COST (COoperation in Scientific and Technological research) ACTION B26 on OSA, with the endorsement of the European Respiratory Society (ERS) and the European Society of Hypertension (ESH). These recommendations are particularly aimed at reminding cardiovascular experts to consider the occurrence of sleep-related breathing disorders in patients with high blood pressure. They are at the same time aimed at reminding respiration experts to consider the occurrence of hypertension in patients with respiratory problems at night.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

REASONS FOR PERFORMING STUDY: Efficacy of medications for recurrent airway obstruction is typically tested using clinical, cytological and lung function examinations of severely affected animals. These trials are technically challenging and may not adequately reflect the spectrum of disease and owner complaints encountered in clinical practice. OBJECTIVE: To determine if owners of horses with chronic airway disease are better able to detect drug efficacy than a veterinarian who clinically examines horses infrequently. METHOD: In a double-blinded randomised controlled trial, owners and a veterinarian compared the efficacy of dexamethasone (0.1 mg/kg bwt per os, q. 24 h, for 3 weeks; n = 9) to placebo (n = 8) in horses with chronic airway disease. Before and after treatment, owners scored performance, breathing effort, coughing and nasal discharge using a visual analogue scale (VAS). The clinician recorded vital parameters, respiratory distress, auscultation findings, cough and nasal discharge, airway mucus score, bronchoalveolar lavage fluid (BALF) cytology and arterial blood gases. RESULTS: The VAS score improved significantly in dexamethasone- but not placebo-treated horses. In contrast, the clinician failed to differentiate between dexamethasone- and placebo-treated animals based on clinical observations, BALF cytology or endoscopic mucus score. Respiratory rate (RR) and arterial oxygen pressure (PaO(2)) improved with dexamethasone but not placebo. CONCLUSIONS AND CLINICAL RELEVANCE: In the design of clinical trials of airway disease treatments, more emphasis should be placed on owner-assessed VAS than on clinical, cytological and endoscopic observations made during brief examinations by a veterinarian. Quantifiable indicators reflecting lung function such as RR and PaO(2) provide a good assessment of drug efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To describe clinical respiratory parameters in cats and dogs with respiratory distress and identify associations between respiratory signs at presentation and localization of the disease with particular evaluation between the synchrony of abdominal and chest wall movements as a clinical indicators for pleural space disease. Design - Prospective observational clinical study. SETTING: Emergency service in a university veterinary teaching hospital. ANIMALS: Cats and dogs with respiratory distress presented to the emergency service between April 2008 and July 2009. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The following parameters were systematically determined at time of admission: respiratory rate, heart rate, temperature, type of breathing, movement of the thoracic and abdominal wall during inspiration, presence of stridor, presence and type of dyspnea, and results of thoracic auscultation. Abdominal and chest wall movement was categorized as synchronous, asynchronous, or inverse. Diagnostic test results, diagnosis, and outcome were subsequently recorded. Based on the final diagnoses, animals were assigned to 1 or more of the following groups regarding the anatomical localization of the respiratory distress: upper airways, lower airways, lung parenchyma, pleural space, thoracic wall, nonrespiratory causes, and normal animals. One hundred and seventy-six animals (103 cats and 73 dogs) were evaluated. Inspiratory dyspnea was associated with upper airway disease in dogs and expiratory dyspnea with lower airway disease in cats. Respiratory noises were significantly associated and highly sensitive and specific for upper airway disease. An asynchronous or inverse breathing pattern and decreased lung auscultation results were significantly associated with pleural space disease in both dogs and cats (P<0.001). The combination is highly sensitive (99%) but not very specific (45%). Fast and shallow breathing was not associated with pleural space disease. Increased or moist pulmonary auscultation findings were associated with parenchymal lung disease. CONCLUSIONS: Cats and dogs with pleural space disease can be identified by an asynchronous or inverse breathing pattern in combination with decreased lung sounds on auscultation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

REASONS FOR PERFORMING STUDY: The horse owner assessed respiratory signs index (HOARSI-1-4, healthy, mildly, moderately and severely affected, respectively) is based on owner-reported clinical history and has been used for the investigation of recurrent airway obstruction (RAO) genetics utilising large sample sizes. Reliable phenotype identification is of paramount importance in genetic studies. Owner reports of respiratory signs have shown good repeatability, but the agreement of HOARSI with an in-depth examination of the lower respiratory tract has not been investigated. OBJECTIVES: To determine the correlation of HOARSI grades 3/4 with the characteristics of RAO and of HOARSI-2 with the characteristics of inflammatory airway disease. Further, to test whether there are phenotypic differences in the manifestation of lung disease between families. METHODS: Seventy-one direct offspring of 2 RAO-affected Warmblood stallions (33 from the first family, 38 from the second) were graded as HOARSI-1-4 and underwent a clinical examination of the respiratory system, arterial blood gas analysis, endoscopic mucus scoring, cytology of tracheobronchial secretion (TBS) and bronchoalveolar lavage fluid (BALF), and clinical assessment of airway reactivity to methacholine chloride. RESULTS: HOARSI-3/4 animals in clinical exacerbation showed signs consistent with RAO: coughing, nasal discharge, abnormal lung sounds and breathing pattern as well as increased numbers of neutrophils in TBS and BALF, excessive mucus accumulation and airway hyper-responsiveness to methacholine. HOARSI-3/4 horses in remission only had increased amounts of tracheal mucus and TBS neutrophil percentages. Clinical phenotypes were not significantly different between the 2 families. CONCLUSIONS AND CLINICAL RELEVANCE: HOARSI reliably identifies RAO-affected horses in our population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metformin is treatment of choice for the metabolic consequences seen in polycystic ovary syndrome for its insulin-sensitizing and androgen-lowering properties. Yet, the mechanism of action remains unclear. Two potential targets for metformin regulating steroid and glucose metabolism are AMP-activated protein kinase (AMPK) signaling and the complex I of the mitochondrial respiratory chain. Androgen biosynthesis requires steroid enzymes 17α-Hydroxylase/17,20 lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2), which are overexpressed in ovarian cells of polycystic ovary syndrome women. Therefore, we aimed to understand how metformin modulates androgen production using NCI-H295R cells as an established model of steroidogenesis. Similar to in vivo situation, metformin inhibited androgen production in NCI cells by decreasing HSD3B2 expression and CYP17A1 and HSD3B2 activities. The effect of metformin on androgen production was dose dependent and subject to the presence of organic cation transporters, establishing an important role of organic cation transporters for metformin's action. Metformin did not affect AMPK, ERK1/2, or atypical protein kinase C signaling. By contrast, metformin inhibited complex I of the respiratory chain in mitochondria. Similar to metformin, direct inhibition of complex I by rotenone also inhibited HSD3B2 activity. In conclusion, metformin inhibits androgen production by mechanisms targeting HSD3B2 and CYP17-lyase. This regulation involves inhibition of mitochondrial complex I but appears to be independent of AMPK signaling.