24 resultados para Resolution of problems
Resumo:
In this study, we present a comprehensive 5000-rad radiation hybrid map of a 40-cM region on equine chromosome 4 (ECA4) that contains quantitative trait loci for equine osteochondrosis. We mapped 29 gene-associated sequence tagged site markers using primers designed from equine expressed sequence tags or BAC clones in the ECA4q12-q22 region. Three blocks of conserved synteny, showing two chromosomal breakpoints, were identified in the segment of ECA4q12-q22. Markers from other segments of HSA7q mapped to ECA13p and ECA4p, and a region of HSA7p was homologous to ECA13p. Therefore, we have improved the resolution of the human-equine comparative map, which allows the identification of candidate genes underlying traits of interest.
Resumo:
We have quantitated the degree of structural preservation in cryo-sections of a vitrified biological specimen. Previous studies have used sections of periodic specimens to assess the resolution present, but preservation before sectioning was not assessed and so the damage due particularly to cutting was not clear. In this study large single crystals of lysozyme were vitrified and from these X-ray diffraction patterns extending to better than 2.1A were obtained. The crystals were high pressure frozen in 30% dextran, and cryo-sectioned using a diamond knife. In the best case, preservation to a resolution of 7.9A was shown by electron diffraction, the first observation of sub-nanometre structural preservation in a vitreous section.
Resumo:
BACKGROUND: Depression is one of the more severe and serious health problems because of its morbidity, disabling effects and for its societal and economic burden. Despite the variety of existing pharmacological and psychological treatments, most of the cases evolve with only partial remission, relapse and recurrence.Cognitive models have contributed significantly to the understanding of unipolar depression and its psychological treatment. However, success is only partial and many authors affirm the need to improve those models and also the treatment programs derived from them. One of the issues that requires further elaboration is the difficulty these patients experience in responding to treatment and in maintaining therapeutic gains across time without relapse or recurrence. Our research group has been working on the notion of cognitive conflict viewed as personal dilemmas according to personal construct theory. We use a novel method for identifying those conflicts using the repertory grid technique (RGT). Preliminary results with depressive patients show that about 90% of them have one or more of those conflicts. This fact might explain the blockage and the difficult progress of these patients, especially the more severe and/or chronic. These results justify the need for specific interventions focused on the resolution of these internal conflicts. This study aims to empirically test the hypothesis that an intervention focused on the dilemma(s) specifically detected for each patient will enhance the efficacy of cognitive behavioral therapy (CBT) for depression. DESIGN: A therapy manual for a dilemma-focused intervention will be tested using a randomized clinical trial by comparing the outcome of two treatment conditions: combined group CBT (eight, 2-hour weekly sessions) plus individual dilemma-focused therapy (eight, 1-hour weekly sessions) and CBT alone (eight, 2-hour group weekly sessions plus eight, 1-hour individual weekly sessions). METHOD: Participants are patients aged over 18 years meeting diagnostic criteria for major depressive disorder or dysthymic disorder, with a score of 19 or above on the Beck depression inventory, second edition (BDI-II) and presenting at least one cognitive conflict (implicative dilemma or dilemmatic construct) as assessed using the RGT. The BDI-II is the primary outcome measure, collected at baseline, at the end of therapy, and at 3- and 12-month follow-up; other secondary measures are also used. DISCUSSION: We expect that adding a dilemma-focused intervention to CBT will increase the efficacy of one of the more prestigious therapies for depression, thus resulting in a significant contribution to the psychological treatment of depression. TRIAL REGISTRATION: ISRCTN92443999; ClinicalTrials.gov Identifier: NCT01542957.
Resumo:
BACKGROUND The Cochrane risk of bias (RoB) tool has been widely embraced by the systematic review community, but several studies have reported that its reliability is low. We aim to investigate whether training of raters, including objective and standardized instructions on how to assess risk of bias, can improve the reliability of this tool. We describe the methods that will be used in this investigation and present an intensive standardized training package for risk of bias assessment that could be used by contributors to the Cochrane Collaboration and other reviewers. METHODS/DESIGN This is a pilot study. We will first perform a systematic literature review to identify randomized clinical trials (RCTs) that will be used for risk of bias assessment. Using the identified RCTs, we will then do a randomized experiment, where raters will be allocated to two different training schemes: minimal training and intensive standardized training. We will calculate the chance-corrected weighted Kappa with 95% confidence intervals to quantify within- and between-group Kappa agreement for each of the domains of the risk of bias tool. To calculate between-group Kappa agreement, we will use risk of bias assessments from pairs of raters after resolution of disagreements. Between-group Kappa agreement will quantify the agreement between the risk of bias assessment of raters in the training groups and the risk of bias assessment of experienced raters. To compare agreement of raters under different training conditions, we will calculate differences between Kappa values with 95% confidence intervals. DISCUSSION This study will investigate whether the reliability of the risk of bias tool can be improved by training raters using standardized instructions for risk of bias assessment. One group of inexperienced raters will receive intensive training on risk of bias assessment and the other will receive minimal training. By including a control group with minimal training, we will attempt to mimic what many review authors commonly have to do, that is-conduct risk of bias assessment in RCTs without much formal training or standardized instructions. If our results indicate that an intense standardized training does improve the reliability of the RoB tool, our study is likely to help improve the quality of risk of bias assessments, which is a central component of evidence synthesis.
Resumo:
High-resolution chemical depth profiling measurements of copper films are presented. The 10 μm thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (τ ∼ 190 fs, λ = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ∼10 ppb, high dynamic range ≥10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research.
Resumo:
Retinal laser photocoagulation is an established and successful treatment for a variety of retinal diseases. While being a valuable treatment modality, laser photocoagulation shows the drawback of employing high energy lasers which are capable of physically destroying the neural retina. For reliable therapy, it is therefore crucial to closely monitor the therapy effects caused in the retinal tissue. A depth resolved representation of optical tissue properties as provided by optical coherence tomography may provide valuable information about the treatment effects in the retinal layers if recorded simultaneously to laser coagulation. Therefore, in this work, the use of ultra-high resolution optical coherence tomography to represent tissue changes caused by conventional and selective retinal photocoagulation is investigated. Laser lesions were placed on porcine retina ex-vivo using a 577 nm laser as well as a pulsed laser at 527 nm built for selective treatment of the retinal pigment epithelium. Applied energies were varied to generate lesions best representing the span from under- to overtreatment. The lesions were examined using a custom-designed optical coherence tomography system with an axial resolution of 1.78 μm and 70 kHz Ascan rate. Optical coherence tomography scans included volume scans before and after irradiation, as well as time lapse scans (Mscan) of the lesions. Results show OCT lesion visibility thresholds to be below the thresholds of ophthalmoscopic inspection. With the ultra-high resolution OCT, 42% - 44% of ophthalmoscopically invisible lesions could be detected and lesions that were under- or overexposed could be distinguished using the OCT data.
Resumo:
The use of hindcast climatic data is quite extended for multiple applications. However, this approach needs the support of a validation process to allow its drawbacks and, therefore, confidence levels to be assessed. In this work, the strategy relies on an hourly wind database resulting from a dynamical downscaling experiment, with a spatial resolution of 10 km, covering the Iberian Peninsula (IP), driven by the ERA40 reanalysis (1959–2001) extended by European Centre for Medium-Range Weather Forecast (ECMWF) analysis (2002–2007) and comprising two main steps. Initially, the skill of the simulation is evaluated comparing the quality-tested observational database (Lorente-Plazas et al., 2014) at local and regional scales. The results show that the model is able to portray the main features of the wind over the IP: annual cycles, wind roses, spatial and temporal variability, as well as the response to different circulation types. In addition, there is a significant added value of the simulation with respect to driving conditions, especially in regions with a complex orography. However, some problems are evident, the major drawback being the systematic overestimation of the wind speed, which is mainly attributed to a missrepresentation of frictional forces. The model skill is also lower along the Mediterranean coast and for the Pyrenees. In a second phase, the high spatio-temporal resolution of the pseudo-real wind database is used to explore the limitations of the observational database. It is shown that missing values do not affect the characterisation of the wind climate over the IP, while the length of the observational period (6 years) is sufficient for most regions, with only a few exceptions. The spatial distribution of the observational sampling schemes should be enhanced to improve the correct assessment of all IP wind regimes, particularly in some mountainous areas.
Resumo:
Purpose: Selective retina therapy (SRT) is a novel treatment for retinal pathologies, solely targeting the retinal pigment epithelium (RPE). During SRT, the detection of an immediate tissue reaction is challenging as tissue effects remain limited to intracellular RPE photodisruption. Time-resolved ultra-high axial resolution optical coherence tomography (OCT) is thus evaluated for the monitoring of dynamic optical changes at and around the RPE during SRT. Methods: An experimental OCT system with an ultra-high axial resolution of 1.78 µm was combined with an SRT system and time-resolved OCT M-scans of the target area were recorded from four patients undergoing SRT. OCT scans were analyzed and OCT morphology was correlated with findings in fluorescein angiography, fundus photography and cross-sectional OCT. Results: In cases where the irradiation caused RPE damage proven by fluorescein angiography, the lesions were well discernible in time-resolved OCT images but remained invisible in fundus photography and cross-sectional OCT acquired after treatment. If RPE damage was introduced, all applied SRT pulses led to detectable signal changes in the time-resolved OCT images. The extent of optical signal variation seen in the OCT data appeared to scale with the applied SRT pulse energy. Conclusion: The first clinical results proved that successful SRT irradiation induces detectable changes in the OCT M-scan signal while it remains invisible in conventional ophthalmoscopic imaging. Thus, real-time high-resolution OCT is a promising modality to monitor and analyze tissue effects introduced by selective retina therapy and may be used to guide SRT in an automatic feedback mode.
Resumo:
Smart et al. (2014) suggested that the detection of nitrate spikes in polar ice cores from solar energetic particle (SEP) events could be achieved if an analytical system with sufficiently high resolution was used. Here we show that the spikes they associate with SEP events are not reliably recorded in cores from the same location, even when the resolution is clearly adequate. We explain the processes that limit the effective resolution of ice cores. Liquid conductivity data suggest that the observed spikes are associated with sodium or another nonacidic cation, making it likely that they result from deposition of sea salt or similar aerosol that has scavenged nitrate, rather than from a primary input of nitrate in the troposphere. We consider that there is no evidence at present to support the identification of any spikes in nitrate as representing SEP events. Although such events undoubtedly create nitrate in the atmosphere, we see no plausible route to using nitrate spikes to document the statistics of such events.