58 resultados para Recombination and trapping
Resumo:
Spermadhesins belong to a novel family of secretory proteins of the male genital tract. They are major proteins of the seminal plasma and have been found peripherally associated to the sperm surface. So far, they have only been detected in ungulates, specifically in pig, cattle, and horse, respectively. Spermadhesins form a subgroup of the superfamily of proteins with a CUB-domain that has been found in a variety of developmentally regulated proteins. The structure and function of the spermadhesins have been investigated in the pig. They are multifunctional proteins showing a range of ligand-binding abilities, e.g. to carbohydrates, phospholipids, and protease inhibitors, suggesting that they may be involved in different steps of fertilization. We report here the genomic organization of the porcine spermadhesin gene cluster as well as a detailed comparative analysis with respect to other mammalian species. The porcine spermadhesin genes are located on SSC 14q28-q29 in a region syntenic to HSA 10q26. The pig contains five closely linked spermadhesin genes, whereas only two spermadhesin genes are present in the cattle genome. Inactive copies of spermadhesin genes are still detectable in the human, chimp, and dog genome while the corresponding region was lost from the rodent genomes of mouse and rat. Within the pig, the five spermadhesin genes contain both highly diverged and highly conserved regions. Interestingly, the pattern of divergence does not correlate with the position of the exons. Evolutionary analyses suggest that the pattern of diversity is shaped by ancestral variation, recombination, and new mutations.
Resumo:
We investigate the plasma environment of comet 67P/Churyumov-Gerasimenko, the target of the European Space Agency's Rosetta mission. Rosetta will rendezvous with the comet in 2014 at almost 3.5 AU and follow it all the way to and past perihelion at 1.3 AU. During its journey towards the inner solar system the comet's environment will significantly change. The interaction of the solar wind with a well developed neutral coma leads to the formation of an upstream bow shock and, closer to the comet, the inner shock separating the solar wind, with cometary pick-up ions mass-loaded, from the inner cometary ions which are dragged outward through abundant collisions and charge exchange with the expanding neutral gas. As a consequence the interplanetary magnetic field is prevented from penetrating the innermost region of the comet, the so-called magnetic cavity. We use our magnetohydrodynamics model BATSRUS (Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme) to simulate the solar wind - comet interaction. The model includes photoionization, ion-electron recombination, and charge exchange. Under certain conditions our model predicts an unstable plasma flow at the inner shock. We show that the plasma shear flow around the magnetic cavity can lead to Kelvin-Helmholtz instabilities. We investigate the onset of this phenomenon with change of heliocentric distance and furthermore show that a previously stable magnetic cavity boundary can become unstable when the neutral gas is predominately released from the dayside of the comet.
Resumo:
The interaction of comets with the solar wind has been the focus of many studies including numerical modeling. We compare the results of our multifluid MHD simulation of comet 1P/Halley to data obtained during the flyby of the European Space Agency's Giotto spacecraft in 1986. The model solves the full set of MHD equations for the individual fluids representing the solar wind protons, the cometary light and heavy ions, and the electrons. The mass loading, charge-exchange, dissociative ion-electron recombination, and collisional interactions between the fluids are taken into account. The computational domain spans over several million kilometers, and the close vicinity of the comet is resolved to the details of the magnetic cavity. The model is validated by comparison to the corresponding Giotto observations obtained by the Ion Mass Spectrometer, the Neutral Mass Spectrometer, the Giotto magnetometer experiment, and the Johnstone Plasma Analyzer instrument. The model shows the formation of the bow shock, the ion pile-up, and the diamagnetic cavity and is able to reproduce the observed temperature differences between the pick-up ion populations and the solar wind protons. We give an overview of the global interaction of the comet with the solar wind and then show the effects of the Lorentz force interaction between the different plasma populations.
Resumo:
Major histocompatibility complex (MHC) antigen-presenting genes are the most variable loci in vertebrate genomes. Host-parasite co-evolution is assumed to maintain the excessive polymorphism in the MHC loci. However, the molecular mechanisms underlying the striking diversity in the MHC remain contentious. The extent to which recombination contributes to the diversity at MHC loci in natural populations is still controversial, and there have been only few comparative studies that make quantitative estimates of recombination rates. In this study, we performed a comparative analysis for 15 different ungulates species to estimate the population recombination rate, and to quantify levels of selection. As expected for all species, we observed signatures of strong positive selection, and identified individual residues experiencing selection that were congruent with those constituting the peptide-binding region of the human DRB gene. However, in addition for each species, we also observed recombination rates that were significantly different from zero on the basis of likelihood-permutation tests, and in other non-quantitative analyses. Patterns of synonymous and non-synonymous sequence diversity were consistent with differing demographic histories between species, but recent simulation studies by other authors suggest inference of selection and recombination is likely to be robust to such deviations from standard models. If high rates of recombination are common in MHC genes of other taxa, re-evaluation of many inference-based phylogenetic analyses of MHC loci, such as estimates of the divergence time of alleles and trans-specific polymorphism, may be required.
Resumo:
Numerous genetic variants of the Echinococcus antigen B (AgB) are encountered within a single metacestode. This could be a reflection of gene redundancy or the result of a somatic hypermutation process. We evaluate the complexity of the AgB multigene family by characterizing the upstream promoter regions of the 4 already known genes (EgAgB1-EgAgB4) and evaluating their redundancy in the genome of 3 Echinococcus species (E. granulosus, E. ortleppi and E. multilocularis) using PCR-based approaches. We have ascertained that the number of AgB gene copies is quite variable, both within and between species. The most repetitive gene seems to be AgB3, of which there are more than 110 copies in E. ortleppi. For E. granulosus, we have cloned and characterized 10 distinct upstream promoter regions of AgB3 from a single metacestode. Our sequences suggest that AgB1 and AgB3 are involved in gene conversion. These results are discussed in light of the role of gene redundancy and recombination in parasite evasion mechanisms of host immunity, which at present are known for protozoan organisms, but virtually unknown for multicellular parasites.
Resumo:
Recombination of different strains and subtypes is a hallmark of lentivirus infections, particularly for human immunodeficiency virus, and contributes significantly to viral diversity and evolution both within individual hosts and within populations. Recombinant viruses are generated in individuals coinfected or superinfected with more than one lentiviral strain or subtype. This, however, has never been described in vivo for the prototype lentivirus maedi-visna virus of sheep and its closely related caprine counterpart, the caprine arthritis-encephalitis virus. Cross-species infections occur in animals living under natural conditions, which suggests that dual infections with small-ruminant lentiviruses (SRLVs) are possible. In this paper we describe the first documented case of coinfection and viral recombination in two naturally infected goats. DNA fragments encompassing a variable region of the envelope glycoprotein were obtained from these two animals by end-limiting dilution PCR of peripheral blood mononuclear cells or infected cocultures. Genetic analyses, including nucleotide sequencing and heteroduplex mobility assays, showed that these goats harbored two distinct populations of SRLVs. Phylogenetic analysis permitted us to assign these sequences to the maedi-visna virus group (SRLV group A) or the caprine arthritis-encephalitis virus group (SRLV group B). SimPlot analysis showed clear evidence of A/B recombination within the env gene segment of a virus detected in one of the two goats. This case provides conclusive evidence that coinfection by different strains of SRLVs of groups A and B can indeed occur and that these viruses actually recombine in vivo.
Resumo:
Lactococcus lactis IL1403 is a Gram-positive bacterium of great biotechnological interest for food grade applications. Its use is however hampered by the difficulty to efficiently transform this strain. We here describe a detailed, optimized electrotransformation protocol which yields a transformation efficiency of 10(6) cfu/microg of DNA with the two E. coli Gram-positive shuttle vectors pC3 and pVA838. The utility of the protocol was demonstrated by the generation of single- and double-knock-out mutants by homologous recombination.
Resumo:
Next-generation sequencing (NGS) is a valuable tool for the detection and quantification of HIV-1 variants in vivo. However, these technologies require detailed characterization and control of artificially induced errors to be applicable for accurate haplotype reconstruction. To investigate the occurrence of substitutions, insertions, and deletions at the individual steps of RT-PCR and NGS, 454 pyrosequencing was performed on amplified and non-amplified HIV-1 genomes. Artificial recombination was explored by mixing five different HIV-1 clonal strains (5-virus-mix) and applying different RT-PCR conditions followed by 454 pyrosequencing. Error rates ranged from 0.04-0.66% and were similar in amplified and non-amplified samples. Discrepancies were observed between forward and reverse reads, indicating that most errors were introduced during the pyrosequencing step. Using the 5-virus-mix, non-optimized, standard RT-PCR conditions introduced artificial recombinants in a fraction of at least 30% of the reads that subsequently led to an underestimation of true haplotype frequencies. We minimized the fraction of recombinants down to 0.9-2.6% by optimized, artifact-reducing RT-PCR conditions. This approach enabled correct haplotype reconstruction and frequency estimations consistent with reference data obtained by single genome amplification. RT-PCR conditions are crucial for correct frequency estimation and analysis of haplotypes in heterogeneous virus populations. We developed an RT-PCR procedure to generate NGS data useful for reliable haplotype reconstruction and quantification.
Resumo:
Firn and polar ice cores offer the only direct palaeoatmospheric archive. Analyses of past greenhouse gas concentrations and their isotopic compositions in air bubbles in the ice can help to constrain changes in global biogeochemical cycles in the past. For the analysis of the hydrogen isotopic composition of methane (δD(CH4) or δ2H(CH4)) 0.5 to 1.5 kg of ice was hitherto used. Here we present a method to improve precision and reduce the sample amount for δD(CH4) measurements in (ice core) air. Pre-concentrated methane is focused in front of a high temperature oven (pre-pyrolysis trapping), and molecular hydrogen formed by pyrolysis is trapped afterwards (post-pyrolysis trapping), both on a carbon-PLOT capillary at −196 °C. Argon, oxygen, nitrogen, carbon monoxide, unpyrolysed methane and krypton are trapped together with H2 and must be separated using a second short, cooled chromatographic column to ensure accurate results. Pre- and post-pyrolysis trapping largely removes the isotopic fractionation induced during chromatographic separation and results in a narrow peak in the mass spectrometer. Air standards can be measured with a precision better than 1‰. For polar ice samples from glacial periods, we estimate a precision of 2.3‰ for 350 g of ice (or roughly 30 mL – at standard temperature and pressure (STP) – of air) with 350 ppb of methane. This corresponds to recent tropospheric air samples (about 1900 ppb CH4) of about 6 mL (STP) or about 500 pmol of pure CH4.
Resumo:
Although it is well established that stromal intercellular adhesion molecule-1 (ICAM-1), ICAM-2, and vascular cell adhesion molecule-1 (VCAM-1) mediate lymphocyte recruitment into peripheral lymph nodes (PLNs), their precise contributions to the individual steps of the lymphocyte homing cascade are not known. Here, we provide in vivo evidence for a selective function for ICAM-1 > ICAM-2 > VCAM-1 in lymphocyte arrest within noninflamed PLN microvessels. Blocking all 3 CAMs completely inhibited lymphocyte adhesion within PLN high endothelial venules (HEVs). Post-arrest extravasation of T cells was a 3-step process, with optional ICAM-1-dependent intraluminal crawling followed by rapid ICAM-1- or ICAM-2-independent diapedesis and perivascular trapping. Parenchymal motility of lymphocytes was modestly reduced in the absence of ICAM-1, while ICAM-2 and alpha4-integrin ligands were not required for B-cell motility within follicles. Our findings highlight nonredundant functions for stromal Ig family CAMs in shear-resistant lymphocyte adhesion in steady-state HEVs, a unique role for ICAM-1 in intraluminal lymphocyte crawling but redundant roles for ICAM-1 and ICAM-2 in lymphocyte diapedesis and interstitial motility.