80 resultados para Recombinant human BMP-7


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin-8 (IL-8), a proinflammatory cytokine produced by human monocytes, fibroblasts, and endothelial and epithelial cells, is effective not only on cells and tissues of human beings but also on those of several animal species. We investigated the importance of recombinant human IL-8 for the activation of canine neutrophils in vitro and its potential for inducing inflammation in vivo. Shape change (10(-9)-10(-7) M IL-8) and chemotaxis (10(-10)-10(-6) M IL-8) assays were used to determine the activation of canine neutrophils in vitro. Chemotaxis was induced by IL-8 at doses > 10(-8) M with a maximum response at 10(-6) M. A rapid shape change of comparable intensity was elicited by 10(-9)-10(-7) M IL-8. Thirty minutes after intradermal injection of 10(-9) moles of IL-8, emigration of neutrophils could be observed and became more intense at 60 minutes and 240 minutes, respectively. Zymosan-activated canine plasma, which served as a positive control, induced a rapid, massive, and more diffuse neutrophil accumulation, whereas the reaction after IL-8 was weaker but still significant. The neutrophil accumulation after IL-8 was preferentially located in perivenular areas of the deep dermis. Recombinant human IL-8 is capable of activating canine neutrophils in vitro and is able to generate significant neutrophil accumulation in dog skin. Its activity is lower than that in human, rabbit, and rat systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ticlopidine and clopidogrel are thienopyridine derivatives used for inhibition of platelet aggregation. Not only hepatotoxicity, but also bone marrow toxicity may limit their use. Aims of the study were to find out whether non-metabolized drug and/or metabolites are responsible for myelotoxicity and whether the inactive clopidogrel metabolite clopidogrel carboxylate contributes to myelotoxicity. We used myeloid progenitor cells isolated from human umbilical cord blood in a colony-forming unit assay to assess cytotoxicity. Degradation of clopidogrel, clopidogrel carboxylate or ticlopidine (studied at 10 and 100 μM) was monitored using LC/MS. Clopidogrel and ticlopidine were both dose-dependently cytotoxic starting at 10 μM. This was not the case for the major clopidogrel metabolite clopidogrel carboxylate. Pre-incubation with recombinant human CYP3A4 not only caused degradation of clopidogrel and ticlopidine, but also increased cytotoxicity. In contrast, clopidogrel carboxylate was not metabolized by recombinant human CYP3A4. Pre-incubation with freshly isolated human granulocytes was not only associated with a myeloperoxidase-dependent degradation of clopidogrel, clopidogrel carboxylate and ticlopidine, but also with dose-dependent cytotoxicity of these compounds starting at 10 μM. In conclusion, both non-metabolized clopidogrel and ticlopidine as well as metabolites of these compounds are toxic towards myeloid progenitor cells. Taking exposure data in humans into account, the myelotoxic element of clopidogrel therapy is likely to be secondary to the formation of metabolites from clopidogrel carboxylate by myeloperoxidase. Concerning ticlopidine, both the parent compound and metabolites formed by myeloperoxidase may be myelotoxic in vivo. The molecular mechanisms of cytotoxicity have to be investigated in further studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: In women with chronic anovulation, the choice of the FSH starting dose and the modality of subsequent dose adjustments are critical in controlling the risk of overstimulation. The aim of this prospective randomized study was to assess the efficacy and safety of a decremental FSH dose regimen applied once the leading follicle was 10-13 mm in diameter in women treated for WHO Group II anovulation according to a chronic low-dose (CLD; 75 IU FSH for 14 days with 37.5 IU increment) step-up protocol. METHODS: Two hundred and nine subfertile women were treated with recombinant human FSH (r-hFSH) (Gonal-f) for ovulation induction according to a CLD step-up regimen. When the leading follicle reached a diameter of 10-13 mm, 158 participants were randomized by means of a computer-generated list to receive either the same FSH dose required to achieve the threshold for follicular development (CLD regimen) or half of this FSH dose [sequential (SQ) regimen]. HCG was administered only if not more than three follicles >or=16 mm in diameter were present and/or serum estradiol (E(2)) values were <1200 pg/ml. The primary outcome measure was the number of follicles >or=16 mm in size at the time of hCG administration. RESULTS: Clinical characteristics and ovarian parameters at the time of randomization were similar in the two groups. Both CLD and SQ protocols achieved similar follicular growth as regards the total number of follicles and medium-sized or mature follicles (>/=16 mm: 1.5 +/- 0.9 versus 1.4 +/- 0.7, respectively). Furthermore, serum E(2) levels were equivalent in the two groups at the time of hCG administration (441 +/- 360 versus 425 +/- 480 pg/ml for CLD and SQ protocols, respectively). The rate of mono-follicular development was identical as well as the percentage of patients who ovulated and achieved pregnancy. CONCLUSIONS: The results show that the CLD step-up regimen for FSH administration is efficacious and safe for promoting mono-follicular ovulation in women with WHO Group II anovulation. This study confirms that maintaining the same FSH starting dose for 14 days before increasing the dose in step-up regimen is critical to adequately control the risk of over-response. Strict application of CLD regimen should be recommended in women with WHO Group II anovulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant human group II phospholipase A2 (sPLA2) added to human platelets in the low microg/ml range induced platelet activation, as demonstrated by measurement of platelet aggregation, thromboxane A2 generation and influx of intracellular free Ca2+ concentration and by detection of time-dependent tyrosine phosphorylation of platelet proteins. The presence of Ca2+ at low millimolar concentrations is a prerequisite for the activation of platelets by sPLA2. Mg2+ cannot replace Ca2+. Mg2+, given in addition to the necessary Ca2+, inhibits sPLA2-induced platelet activation. Pre-exposure to sPLA2 completely blocked the aggregating effect of a second dose of sPLA2. Albumin or indomethacin inhibited sPLA2-induced aggregation, similarly to the inhibition of arachidonic acid-induced aggregation. Platelets pre-treated with heparitinase or phosphatidylinositol-specific phospholipase C lost their ability to aggregate in response to sPLA2, although they still responded to other agonists. This suggests that a glycophosphatidylinositol-anchored platelet-membrane heparan sulphate proteoglycan is the binding site for sPLA2 on platelets. Previous reports have stated that sPLA2 is unable to activate platelets. The inhibitory effect of albumin and Mg2+, frequently used in aggregation studies, and the fact that isolated platelets lose their responsiveness to sPLA2 relatively quickly, may explain why the platelet-activating effects of sPLA2 have not been reported earlier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To compare the potential of bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7) and transforming growth factor beta1 (TGFbeta1) to effect the chondrogenic differentiation of synovial explants by analyzing the histologic, biochemical, and gene expression characteristics of the cartilaginous tissues formed. METHODS: Synovial explants derived from the metacarpal joints of calves were cultured in agarose. Initially, BMP-2 was used to evaluate the chondrogenic potential of the synovial explants under different culturing conditions. Under appropriate conditions, the chondrogenic effects of BMP-2, BMP-7, and TGFbeta1 were then compared. The differentiated tissue was characterized histologically, histomorphometrically, immunohistochemically, biochemically, and at the gene expression level. RESULTS: BMP-2 induced the chondrogenic differentiation of synovial explants in a dose- and time-dependent manner under serum- and dexamethasone-free conditions. The expression levels of cartilage-related genes increased in a time-dependent manner. BMP-7 was more potent than BMP-2 in inducing chondrogenesis, but the properties of the differentiated tissue were similar in each case. The type of cartilaginous tissue formed under the influence of TGFbeta1 differed in terms of both cell phenotype and gene expression profiles. CONCLUSION: The 3 tested members of the TGFbeta superfamily have different chondrogenic potentials and induce the formation of different types of cartilaginous tissue. To effect the full differentiation of synovial explants into a typically hyaline type of articular cartilage, further refinement of the stimulation conditions is required. This might be achieved by the simultaneous application of several growth factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The objective of the study was to evaluate tissue reactions such as bone genesis, cartilage genesis and graft materials in the early phase of lumbar intertransverse process fusion in a rabbit model using computed tomography (CT) imaging with CT intensity (Hounsfield units) measurement, and to compare these data with histological results. MATERIALS AND METHODS: Lumbar intertransverse process fusion was performed on 18 rabbits. Four graft materials were used: autograft bone (n = 3); collagen membrane soaked with recombinant human bone morphogenetic protein-2 (rhBMP-2) (n = 5); granular calcium phosphate (n = 5); and granular calcium phosphate coated with rhBMP-2 (n = 5). All rabbits were euthanized 3 weeks post-operatively and lumbar spines were removed for CT imaging and histological examination. RESULTS: Computed tomography imaging demonstrated that each fusion mass component had the appropriate CT intensity range. CT also showed the different distributions and intensities of bone genesis in the fusion masses between the groups. Each component of tissue reactions was identified successfully on CT images using the CT intensity difference. Using CT color mapping, these observations could be easily visualized, and the results correlated well with histological findings. CONCLUSIONS: The use of CT intensity is an effective approach for observing and comparing early tissue reactions such as newly synthesized bone, newly synthesized cartilage, and graft materials after lumbar intertransverse process fusion in a rabbit model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of isolation of bone marrow (BM) mesenchymal stem/stromal cells (MSCs) is a limiting factor in their study and therapeutic use. MSCs are typically expanded from BM cells selected on the basis of their adherence to plastic, which results in a heterogeneous population of cells. Prospective identification of the antigenic profile of the MSC population(s) in BM that gives rise to cells with MSC activity in vitro would allow the preparation of very pure populations of MSCs for research or clinical use. To address this issue, we used polychromatic flow cytometry and counterflow centrifugal elutriation to identify a phenotypically distinct population of mesenchymal stem/progenitor cells (MSPCs) within human BM. The MSPC activity resided within a population of rare, small CD45⁻CD73⁺CD90⁺CD105⁺ cells that lack CD44, an antigen that is highly expressed on culture-expanded MSCs. In culture, these MSPCs adhere to plastic, rapidly proliferate, and acquire CD44 expression. They form colony forming units-fibroblast and are able to differentiate into osteoblasts, chondrocytes, and adipocytes under defined in vitro conditions. Their acquired expression of CD44 can be partially downregulated by treatment with recombinant human granulocyte-colony stimulating factor, a response not found in BM-MSCs derived from conventional plastic adherence methods. These observations indicate that MSPCs within human BM are rare, small CD45⁻CD73⁺CD90⁺CD105⁺ cells that lack expression of CD44. These MSPCs give rise to MSCs that have phenotypic and functional properties that are distinct from those of BM-MSCs purified by plastic adherence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant human erythropoietin (EPO) has been successfully tested as neuroprotectant in brain injury models. The first large clinical trial with stroke patients, however, revealed negative results. Reasons are manifold and may include side-effects such as thrombotic complications or interactions with other medication, EPO concentration, penetration of the blood-brain-barrier and/or route of application. The latter is restricted to systemic application. Here we hypothesize that EPO is neuroprotective in a rat model of acute subdural hemorrhage (ASDH) and that direct cortical application is a feasible route of application in this injury type. The subdural hematoma was surgically evacuated and EPO was applied directly onto the surface of the brain. We injected NaCl, 200, 2000 or 20,000IU EPO per rat i.v. at 15min post-ASDH (400μl autologous venous blood) or NaCl, 0.02, 0.2 or 2IU per rat onto the cortical surface after removal of the subdurally infused blood t at 70min post-ASDH. Arterial blood pressure (MAP), blood chemistry, intracranial pressure (ICP), cerebral blood flow (CBF) and brain tissue oxygen (ptiO2) were assessed during the first hour and lesion volume at 2days after ASDH. EPO 20,000IU/rat (i.v.) elevated ICP significantly. EPO at 200 and 2000IU reduced lesion volume from 38.2±0.6mm(3) (NaCl-treated group) to 28.5±0.9 and 22.2±1.3mm(3) (all p<0.05 vs. NaCl). Cortical application of 0.02IU EPO after ASDH evacuation reduced injury from 36.0±5.2 to 11.2±2.1mm(3) (p=0.007), whereas 0.2IU had no effect (38.0±9.0mm(3)). The highest dose of both application routes (i.v. 20,000IU; cortical 2IU) enlarged the ASDH-induced damage significantly to 46.5±1.7 and 67.9±10.4mm(3) (all p<0.05 vs. NaCl). In order to test whether Tween-20, a solvent of EPO formulation 'NeoRecomon®' was responsible for adverse effects two groups were treated with NaCl or Tween-20 after the evacuation of ASDH, but no difference in lesion volume was detected. In conclusion, EPO is neuroprotective in a model of ASDH in rats and was most efficacious at a very low dose in combination with subdural blood removal. High systemic and topically applied concentrations caused adverse effects on lesion size which were partially due to increased ICP. Thus, patients with traumatic ASDH could be treated with cortically applied EPO but with caution concerning concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450c17 catalyzes both 17alpha-hydroxylation and 17,20-lyase conversion of 21-carbon steroids to 19-carbon precursors of sex steroids. P450c17 can mediate testosterone biosynthesis via the conversion of pregnenolone to dehydroepiandrosterone (the delta(5) pathway) or via conversion of progesterone to androstenedione (the delta(4) pathway). In many species, the 17, 20-lyase activity of P450c17 for one pathway dominates, reflecting the preferred steroidogenic pathway of that species. All studies of recombinant human P450c17 and of human adrenal microsomes have found high 17, 20-lyase activity only in the delta(5) pathway. Because the 17, 20-lyase activities in both the delta(4) and delta(5) pathways for testicular P450c17 have not been directly compared, however, it is not known if the delta(5) pathway dominates in the human testis. To resolve this issue, we assayed the conversion of 17alpha-hydroxypregnenolone to dehydroepiandrosterone (delta(5) 17, 20-lyase activity) and of 17alpha-hydroxyprogesterone to androstenedione (delta(4) 17, 20-lyase activity) by human fetal testicular microsomes. We obtained apparent Michaelis constant (K(m)) and maximum velocity (V(max)) values of 1.0 microM and 0.73 pmol.min(-1). microg(-1) for delta(5) 17, 20-lyase activity and of 3.5 microM and 0.23 pmol.min(-1). microg(-1) for delta(4) 17, 20-lyase activity. Catalytic efficiencies, expressed as the ratio V(max)/K(m), were 0.73 and 0.066 for the delta(5) and delta(4) reactions, respectively, indicating 11-fold higher preference for the delta(5) pathway. We conclude that the majority of testosterone biosynthesis in the human testis proceeds through the conversion of pregnenolone to dehydroepiandrosterone via the delta(5) pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED Treatment effects over 2 years of teriparatide vs. ibandronate in postmenopausal women with osteoporosis were compared using lumbar spine bone mineral density (BMD) and trabecular bone score (TBS). Teriparatide induced larger increases in BMD and TBS compared to ibandronate, suggesting a more pronounced effect on bone microarchitecture of the bone anabolic drug. INTRODUCTION The trabecular bone score (TBS) is an index of bone microarchitecture, independent of bone mineral density (BMD), calculated from anteroposterior spine dual X-ray absorptiometry (DXA) scans. The potential role of TBS for monitoring treatment response with bone-active substances is not established. The aim of this study was to compare the effects of recombinant human 1-34 parathyroid hormone (teriparatide) and the bisphosphonate ibandronate (IBN), on lumbar spine (LS) BMD and TBS in postmenopausal women with osteoporosis. METHODS Two patient groups with matched age, body mass index (BMI), and baseline LS BMD, treated with either daily subcutaneous teriparatide (N = 65) or quarterly intravenous IBN (N = 122) during 2 years and with available LS BMD measurements at baseline and 2 years after treatment initiation were compared. RESULTS Baseline characteristics (overall mean ± SD) were similar between groups in terms of age 67.9 ± 7.4 years, body mass index 23.8 ± 3.8 kg/m(2), BMD L1-L4 0.741 ± 0.100 g/cm(2), and TBS 1.208 ± 0.100. Over 24 months, teriparatide induced a significantly larger increase in LS BMD and TBS than IBN (+7.6 % ± 6.3 vs. +2.9 % ± 3.3 and +4.3 % ± 6.6 vs. +0.3 % ± 4.1, respectively; P < 0.0001 for both). LS BMD and TBS were only weakly correlated at baseline (r (2) = 0.04) with no correlation between the changes in BMD and TBS over 24 months. CONCLUSIONS In postmenopausal women with osteoporosis, a 2-year treatment with teriparatide led to a significantly larger increase in LS BMD and TBS than IBN, suggesting that teriparatide had more pronounced effects on bone microarchitecture than IBN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The long-term safety of growth hormone treatment is uncertain. Raised risks of death and certain cancers have been reported inconsistently, based on limited data or short-term follow-up by pharmaceutical companies. PATIENTS AND METHODS The SAGhE (Safety and Appropriateness of Growth Hormone Treatments in Europe) study assembled cohorts of patients treated in childhood with recombinant human growth hormone (r-hGH) in 8 European countries since the first use of this treatment in 1984 and followed them for cause-specific mortality and cancer incidence. Expected rates were obtained from national and local general population data. The cohort consisted of 24,232 patients, most commonly treated for isolated growth failure (53%), Turner syndrome (13%) and growth hormone deficiency linked to neoplasia (12%). This paper describes in detail the study design, methods and data collection and discusses the strengths, biases and weaknesses consequent on this. CONCLUSION The SAGhE cohort is the largest and longest follow-up cohort study of growth hormone-treated patients with follow-up and analysis independent of industry. It forms a major resource for investigating cancer and mortality risks in r-hGH patients. The interpretation of SAGhE results, however, will need to take account of the methods of cohort assembly and follow-up in each country.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Endothelial Progenitor Cells (EPC) support neovascularization and regeneration of injured endothelium both by providing a proliferative cell pool capable of differentiation into mature vascular endothelial cells and by secretion of angiogenic growth factors. OBJECTIVE: The aim of this study was to investigate the role of PDGF-BB and PDGFR in EPC-mediated angiogenesis of differentiated endothelial cells. METHODS AND RESULTS: Conditioned medium from human EPC (EPC-CM) cultured in hypoxic conditions contained substantially higher levels of PDGF-BB as compared to normoxic conditions (P<0.01). EPC-CM increased proliferation (1.39-fold; P<0.001) and migration (2.13-fold; P<0.001) of isolated human umbilical vein endothelial cells (HUVEC), as well as sprouting of vascular structures from ex vivo cultured aortic rings (2.78-fold increase; P = 0.01). The capacity of EPC-CM to modulate the PDGFR expression in HUVEC was assessed by western blot and RT-PCR. All the pro-angiogenic effects of EPC-CM on HUVEC could be partially inhibited by inactivation of PDGFR (P<0.01). EPC-CM triggered a distinct up-regulation of PDGFR (2.5±0.5; P<0.05) and its phosphorylation (3.6±0.6; P<0.05) in HUVEC. This was not observed after exposure of HUVEC to recombinant human PDGF-BB alone. CONCLUSION: These data indicate that EPC-CM sensitize endothelial cells and induce a pro-angiogenic phenotype including the up-regulation of PDGFR , thereby turning the PDGF/PDGFR signaling-axis into a critical element of EPC-induced endothelial angiogenesis. This finding may be utilized to enhance EPC-based therapy of ischemic tissue in future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anemia associated with cancer and cancer therapy is a common and important issue in the treatment of patients with malignant disease. Conventionally, blood transfusions are used to treat severe cancer-related anemia. Short- and long-acting preparations of recombinant human erythropoiesis-stimulating agents (ESAs) offer an alternative treatment option. Multiple studies and subsequent meta-analyses have demonstrated that ESA treatment increases hemoglobin levels and reduces the likelihood of transfusion for a proportion of treated patients. However, studies that attempted to evaluate whether ESAs improve tumor response and survival have generated conflicting evidence. Results of smaller trials reporting improved survival outcomes were contradicted by large randomized controlled trials that reported more deaths in patients receiving ESAs. In addition, there is strong evidence that cancer patients receiving ESAs have an increased risk of thromboembolic and cardiovascular events. We herein review the main meta-analyses published in the field, their strengths and weaknesses, their contribution to patient management and future perspectives for systematic reviews.