28 resultados para Rat control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antimicrobial peptides are intrinsic to the innate immune system in many organ systems, but little is known about their expression in the central nervous system. We examined cerebrospinal fluid (CSF) and serum from patients with active bacterial meningitis to assess antimicrobial peptides and possible bactericidal properties of the CSF. We found antimicrobial peptides (human cathelicidin LL-37) in the CSF of patients with bacterial meningitis but not in control CSF. We next characterized the expression, secretion, and bactericidal properties of rat cathelin-related antimicrobial peptide, the homologue of the human LL-37, in rat astrocytes and microglia after incubation with different bacterial components. Using real-time polymerase chain reaction and Western blotting, we determined that supernatants from both astrocytes and microglia incubated with bacterial component supernatants had antimicrobial activity. The expression of rat cathelin-related antimicrobial peptide in rat glial cells involved different signal transduction pathways and was induced by the inflammatory cytokines interleukin 1beta and tumor necrosis factor. In an experimental model of meningitis, infant rats were intracisternally infected with Streptococcus pneumoniae, and rat cathelin-related antimicrobial peptide was localized in glia, choroid plexus, and ependymal cells by immunohistochemistry. Together, these results suggest that cathelicidins produced by glia and other cells play an important part in the innate immune response against pathogens in central nervous system bacterial infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eotaxin/CCL11 chemokine is expressed in different organs, including the heart, but its precise cellular origin in the heart is unknown. Eotaxin is associated with Th2-like responses and exerts its chemotactic effect through the chemokine receptor-3 (CCR3), which is also expressed on mast cells (MC). The aim of our study was to find the cellular origin of eotaxin in the heart, and to assess whether expression is changing during ongoing acute heart transplant rejection, indicating a correlation with mast cell infiltration which we observed in a previous study. In a model of ongoing acute heart transplant rejection in the rat, we found eotaxin mRNA expression within infiltrating macrophages, but not in mast cells, by in situ-hybridization. A five-fold increase in eotaxin protein in rat heart transplants during ongoing acute rejection was measured on day 28 after transplantation, compared to native and isogeneic control hearts. Eotaxin concentrations in donor hearts on day 28 after transplantation were significantly higher compared to recipient hearts, corroborating an origin of eotaxin from cells within the heart, and not from the blood. The quantitative comparison of eotaxin mRNA expression between native hearts, isografts, and allografts, respectively, revealed no statistically significant difference after transplantation, probably due to an overall increase in the housekeeping gene's 18S rRNA during rejection. Quantitative RT-PCR showed an increase in mRNA expression of CCR3, the receptor for eotaxin, during ongoing acute rejection of rat heart allografts. Although a correlation between increasing eotaxin expression by macrophages and mast cell infiltration is suggestive, functional studies will elucidate the role of eotaxin in the process of ongoing acute heart transplant rejection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Using a rat model, we evaluated the kinetics and histomorphometry of ectopic bone formation in association with biomimetic implant coatings containing BMP-2. MATERIALS AND METHODS: One experimental and three control groups were set up: titanium-alloy discs coated with a biomimetically co-precipitated layer of calcium phosphate and BMP-2 [1.7 microg per disc (incorporated-BMP group)]; uncoated discs (control); discs biomimetically coated with a layer of calcium phosphate alone (control); and discs biomimetically coated with a layer of calcium phosphate bearing superficially adsorbed BMP-2 [0.98 microg per disc (control)]. Discs (n = 6 per group) were implanted subcutaneously in rats and retrieved at 7-day intervals over a period of 5 weeks for kinetic, histomorphometrical, morphological and histochemical analyses. RESULTS: In the incorporated-BMP-2 group, osteogenic activity was first observed 2 weeks after implantation and thereafter continued unabated until the end of the monitoring period. The net weekly rates of bone formation per disc were 5.8 mm3 at 2 weeks and 3.64 mm3 at 5 weeks. The total volumes of bone formed per disc at these junctures were 5.8 mm3 and 10.3 mm3, respectively. Bone tissue, which was formed by a direct ossification mechanism, was deposited at distances of up to 340 microm from the implant surfaces. The biomimetic coatings were degraded gradually, initially by foreign body giant cells alone and then also by osteoclasts. Forty percent of the coating material (and thus presumably of the incorporated BMP-2) remained at the end of the monitoring period. Hence, 60% of the incorporated BMP-2 had been released. At this 5-week juncture, no bone tissue was associated with any of the control implants. CONCLUSION: BMP-2 incorporated into biomimetic calcium phosphate coatings is capable not only of inducing bone formation at an ectopic site in vivo but also of doing so with a very high potency at a low pharmacological level, and of sustaining this activity for a considerable period of time. The sustainment of osteogenic activity is of great clinical importance for the osseointegration of dental and orthopedic implants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ventral mesencephalon (VM) of fetal rat and human origin grown as free-floating roller-tube (FFRT) cultures can survive subsequent grafting to the adult rat striatum. To further explore the functional efficacy of such grafts, embryonic day 13 ventral mesencephalic tissue was grafted either after 7 days in culture or directly as dissociated cell suspensions, and compared with regard to neuronal survival and ability to normalize rotational behavior in adult rats with unilateral 6-hydroxydopamine (6-OHDA) lesions. Other lesioned rats received injections of cell-free medium and served as controls. The amphetamine-induced rotational behavior of all 6-OHDA-lesioned animals was monitored at various time points from 18 days before transplantation and up to 80 days after transplantation. Tyrosine hydroxylase (TH) immunostaining of the histologically processed brains served to assess the long-term survival of grafted dopaminergic neurons and to correlate that with the behavioral effects. Additional cultures and acutely prepared explants were also fixed and stored for histological investigation in order to estimate the loss of dopaminergic neurons in culture and after transplantation. Similar behavioral improvements in terms of significant reductions in amphetamine-induced rotations were observed in rats grafted with FFRT cultures (127%) and rats grafted with cell suspensions (122%), while control animals showed no normalization of rotational behavior. At 84 days after transplantation, there were similar numbers of TH-immunoreactive (TH-ir) neurons in grafts of cultured tissue (775 +/- 98, mean +/- SEM) and grafts of fresh, dissociated cell suspension (806 +/- 105, mean +/- SEM). Cell counts in fresh explants, 7-day-old cultures, and grafted cultures revealed a 68.2% loss of TH-ir cells 7 days after explantation, with an additional 23.1% loss after grafting, leaving 8.7% of the original number of TH-ir cells in the intracerebral grafts. This is to be compared with a survival rate of 9.1% for the TH-ir cells in the cell-suspension grafts. Immunostaining for the calcium-binding proteins calretinin, calbindin, and parvalbumin showed no differences in the neuronal expression of these proteins between the two graft types. In conclusion, we found comparable dopaminergic cell survival and functional effects of tissue-culture grafts and cell-suspension grafts, which currently is the type of graft most commonly used for experimental and clinical grafting. In this sense the result is promising for the development of an effective in vitro storage of fetal nigral tissue, which at the same time would allow neuroprotective and neurotrophic treatment prior to intracerebral transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free-floating roller tube cultures of human fetal (embryonic age 6-10 weeks post-conception) and rat fetal (embryonic day 13) ventral mesencephalon were prepared. After 7-15 days in vitro, the mesencephalic tissue cultures were transplanted into the striatum of adult rats that had received unilateral injections of 6-hydroxydopamine into the nigrostriatal bundle 3-5 weeks prior to transplantation. Graft survival was assessed in tyrosine hydroxylase (TH)-immunostained serial sections of the grafted brains up to post-transplantation week 4 for the human fetal xenografts and post-transplantation week 11 for the rat fetal allografts. D-amphetamine-induced rotation was monitored up to 10 weeks after transplantation in the allografted animals and compared with that of lesioned-only control animals. All transplanted animals showed large, viable grafts containing TH-immunoreactive (ir) neurons. The density of TH-ir neurons in the human fetal xenografts and in rat fetal allografts was similar. A significant amelioration of the amphetamine-induced rotation was observed in the animals that received cultured tissue allografts. These results promote the feasibility of in vitro maintenance of fetal human and rat nigral tissue prior to transplantation using the free-floating roller tube technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transplantation of fetal dopaminergic (DA) neurons offers an experimental therapy for Parkinson's disease (PD). The low availability and the poor survival and integration of transplanted cells in the host brain are major obstacles in this approach. Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor with growth- and survival-promoting capabilities for developing DA neurons. In the present study, we examined whether pretreatment of ventral mesencephalic (VM) free-floating roller tube (FFRT) cultures with GDNF would improve graft survival and function. For that purpose organotypic cultures of E14 rat VM were grown for 2, 4 or 8 days in the absence (control) or presence of GDNF [10 ng/ml] and transplanted into the striatum of 6-hydroxydopamine-lesioned rats. While all groups of rats showed a significant reduction in d-amphetamine-induced rotations at 6 weeks posttransplantation a significantly improved graft function was observed only in the days in vitro (DIV) 4 GDNF pretreated group compared to the control group. In addition, no statistical significant differences between groups were found in the number of surviving tyrosine hydroxylase-immunoreactive (TH-ir) neurons assessed at 9 weeks posttransplantation. However, a tendency for higher TH-ir fiber outgrowth from the transplants in the GDNF pretreated groups as compared to corresponding controls was observed. Furthermore, GDNF pretreatment showed a tendency for a higher number of GIRK2 positive neurons in the grafts. In sum, our findings demonstrate that GDNF pretreatment was not disadvantageous for transplants of embryonic rat VM with the FFRT culture technique but only marginally improved graft survival and function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Crohn's disease is a chronic inflammatory process that has recently been associated with a higher risk of early implant failure. Herein we provide information on the impact of colitis on peri-implant bone formation using preclinical models of chemically induced colitis. METHODS Colitis was induced by intrarectal instillation of 2,4,6-trinitro-benzene-sulfonic-acid (TNBS). Colitis was also induced by feeding rats dextran-sodium-sulfate (DSS) in drinking water. One week after disease induction, titanium miniscrews were inserted into the tibia. Four weeks after implantation, peri-implant bone volume per tissue volume (BV/TV) and bone-to-implant contacts (BIC) were determined by histomorphometric analysis. RESULTS Cortical histomorphometric parameters were similar in the control (n = 10), DSS (n = 10) and TNBS (n = 8) groups. Cortical BV/TV was 92.2 ± 3.7%, 92.0 ± 3.0% and 92.6 ± 2.7%. Cortical BIC was 81.3 ± 8.8%, 83.2 ± 8.4% and 84.0 ± 7.0%, respectively. No significant differences were observed when comparing the medullary BV/TV and BIC (19.5 ± 6.4%, 16.2 ± 5.6% and 15.4 ± 9.0%) and (48.8 ± 12.9%, 49.2 ± 6.2 and 41.9 ± 11.7%), respectively. Successful induction of colitis was confirmed by loss of body weight and colon morphology. CONCLUSIONS The results suggest bone regeneration around implants is not impaired in chemically induced colitis models. Considering that Crohn's disease can affect any part of the gastrointestinal tract including the mouth, our model only partially reflects the clinical situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucocorticoids are often applied in neonatology and perinatology to fight the problems of respiratory distress and chronic lung disease. There are, however, many controversies regarding the adverse side effects and long-term clinical benefits of this therapeutic approach. In rats, glucocorticoids are known to seriously impair the formation of alveoli when applied during the first two postnatal weeks even at very low dosage. The current study investigates short-term and long-term glucocorticoid effects on the rat lung by means of morphologic and morphometric observations at light and electron microscopic levels. Application of a high-dosage protocol for only few days resulted in a marked acceleration of lung development with a precocious microvascular maturation resulting in single capillary network septa in the first 4 postnatal days. By postnatal d 10, the lung morphologic phenotype showed a step back in the maturational state, with an increased number of septa with double capillary layer, followed by an exceptional second round of the alveolarization process. As a result of this process, there was an almost complete recovery in the parenchymal lung structure by postnatal d 36, and by d 60, there were virtually no qualitative or quantitative differences between experimental and control rats. These findings indicate that both dosage and duration of glucocorticoid therapy in the early postnatal period are very critical with respect to lung development and maturation and that a careful therapeutic strategy can minimize late sequelae of treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the consequences of early malnutrition on milk production by dams and on body weight and structural lung growth of young rats using two models of protein restriction. Dams of the early restriction group were fed an 8% casein diet starting at parturition. Those of the delayed restriction group received a 12% casein diet from lactation d 8-14 and thereafter the 8% diet. After weaning, early restriction and delayed restriction group rats were maintained on low protein until d 49, then refed the control diet (18% casein) up to d 126. Milk was analyzed on d 12. Animals were killed at d 21, 49, and 126 for lung fixation in situ. In this report, we show that protein restriction lowered milk yield to 38% of normal. Milk lipid per gram of dry weight tended to be increased, whereas lactose and protein were significantly decreased. Pups from protein-restricted dams grew less and had lower lung volumes, effects being more serious at d 49. However, specific lung volumes (in milliliters per 100 g body weight) were constantly increased. This means that lung was either less affected than body mass or overdistended due to less connective tissue. After refeeding, both groups showed a remarkable catch-up in growth with restoration of the normal allometric relationship between lung volume and body weight. Thus, even after an early onset of protein restriction to total body, the lung is still capable to substantially recover from growth retardation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been shown that glucocorticoids accelerate lung development by limiting alveolar formation resulting from a premature maturation of the alveolar septa. Based on these data, the aim of the present work was to analyze the influence of dexamethasone on cell cycle control mechanisms during postnatal lung development. Cell proliferation is regulated by a network of signaling pathways that converge to the key regulator of cell cycle machinery: the cyclin-dependent kinase (CDK) system. The activity of the various cyclin/CDK complexes can be modulated by the levels of the cyclins and their CDKs, and by expression of specific CDK inhibitors (CKIs). In the present study, newborn rats were given a 4-d treatment with dexamethasone (0.1-0.01 microg/g body weight dexamethasone sodium phosphate daily on d 1-4), or saline. Morphologically, the treatment caused a significant thinning of the septa and an acceleration of lung maturation on d 4. Study of cyclin/CDK system at d 1-36 documented a transient down-regulation of cyclin/CDK complex activities at d 4 in the dexamethasone-treated animals. Analysis of the mechanisms involved suggested a role for the CKIs p21CIP1 and p27KIP1. Indeed, we observed an increase in p21CIP1 and p27KIP1 protein levels on d 4 in the dexamethasone-treated animals. By contrast, no variations in either cyclin and CDK expression, or cyclin/CDK complex formation could be documented. We conclude that glucocorticoids may accelerate lung maturation by influencing cell cycle control mechanisms, mainly through impairment of G1 cyclin/CDK complex activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE We investigated the skeletal growth profile of female rats from birth to senescence (100weeks) on the basis of sequential radiometrical, hormonal and biochemical parameters. DESIGN Weaning rats entered the study which was divided into two sections: a) sequential measurements of vertebral and tibial growths and bone mineral density (BMD), estimation of mineral content of the entire skeleton (BMC) and chemical analysis of vertebral Ca; and b) determination of basal and pulsatile growth hormone (rGH), insulin-like growth hormone (IGF-I), estradiol (E2), parathyroid hormone (PTH), osteocalcin (OC) and urinary d-pyridinoline (dp) throughout the experimental period. RESULTS Vertebral and tibial growths ceased at week 25 whereas BMD and BMC as well as total vertebral Ca exhibited a peak bone mass at week 40. rGH pulsatile profiles were significantly higher in younger animals coinciding with the period of active growth and IGF-I peaked at 7weeks, slowly declining thereafter and stabilizing after week 60. OC and dp closely paralleled IGF-I coinciding with the period of enhanced skeletal growth, remaining thereafter in the low range indicative of reduced bone turnover. E2 increased during reproductive life but the lower values subsequently recorded were still in the physiological range, strongly suggesting a protective role of this steroid on bone remodeling. PTH followed a similar profile to E2, but the significance of this after completion of growth remains unclear. CONCLUSIONS Mechanisms governing skeletal growth in the female rat appear similar to those in humans. Bone progression and attainment of peak bone mass are under simultaneous control of rGH, IGF-I and calciotropic hormones and are modulated by E2. This steroid seems to protect the skeleton from resorption before senescence whereas the role of PTH in this context remains uncertain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM Pharmacological inhibitors of prolyl hydroxylases, also termed hypoxia-mimetic agents (HMAs), when repeatedly injected can support angiogenesis and bone regeneration. However, the possible role of HMA loaded onto bone substitutes to support angiogenesis and bone regeneration under diabetic condition is unknown. The capacity of HMA loaded onto deproteinized bovine bone mineral (DBBM) to support angiogenesis and bone formation was examined in diabetic Wistar rats. METHODS Diabetes was induced by intraperitoneal injection of streptozotocin. The HMA dimethyloxalylglycine (DMOG) and desferrioxamine (DFO) were lyophilized onto DBBM. Calvarial defects were created with a trephine drill and filled with the respective bone substitutes. After 4 weeks of healing, the animals were subjected to histological and histomorphometric analysis. RESULTS In this report, we provide evidence that DMOG loaded onto DBBM can support angiogenesis in vivo. Specifically, we show that DMOG increased the vessel area in the defect site to 2.4% ± 1.3% compared with controls 1.1% ± 0.48% (P = 0.012). There was a trend toward an increased vessel number in the defect site with 38.6 ± 17.4 and 31.0 ± 10.3 in the DMOG and the control group (P = 0.231). The increase in angiogenesis, however, did not translate into enhanced bone formation in the defect area with 9.2% ± 7.1% and 8.4% ± 5.6% in DMOG and control group, respectively. No significant changes were caused by DFO. CONCLUSIONS The results suggest that DMOG loaded onto DBBM can support angiogenesis, but bone formation does not increase accordingly in a type 1 diabetic rat calvarial defect model at the indicated time point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The myelin-associated protein Nogo-A is among the most potent neurite growth inhibitors in the adult CNS. Recently, Nogo-A expression was demonstrated in a number of neuronal subpopulations of the adult and developing CNS but at present, little is known about the expression of Nogo-A in the nigrostriatal system, a brain structure severely affected in Parkinson's disease (PD). The present study sought to characterize the expression pattern of Nogo-A immunoreactive (ir) cells in the adult ventral mesencephalon of control rats and in the 6-hydroxydopamine (6-OHDA) rat model of PD. Immunohistochemical analyses of normal adult rat brain showed a distinct expression of Nogo-A in the ventral mesencephalon, with the highest level in the substantia nigra pars compacta (SNc) where it co-localized with dopaminergic neurons. Analyses conducted 1week and 1 month after unilateral striatal injections of 6-OHDA disclosed a severe loss of the number of Nogo-A-ir cells in the SNc. Notably, at 1week after treatment, more dopaminergic neurons expressing Nogo-A were affected by the 6-OHDA toxicity than Nogo-A-negative dopaminergic neurons. However, at later time points more of the surviving dopaminergic neurons expressed Nogo-A. In the striatum, both small and large Nogo-A-positive cells were detected. The large cells were identified as cholinergic interneurons. Our results suggest yet unidentified functions of Nogo-A in the CNS beyond the inhibition of axonal regeneration and plasticity, and may indicate a role for Nogo-A in PD.