26 resultados para Random Number Generation
Resumo:
Mycobacterium bovis populations in countries with persistent bovine tuberculosis usually show a prevalent spoligotype with a wide geographical distribution. This study applied mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing to a random panel of 115 M. bovis isolates that are representative of the most frequent spoligotype in the Iberian Peninsula, SB0121. VNTR typing targeted nine loci: ETR-A (alias VNTR2165), ETR-B (VNTR2461), ETR-D (MIRU4, VNTR580), ETR-E (MIRU31, VNTR3192), MIRU26 (VNTR2996), QUB11a (VNTR2163a), QUB11b (VNTR2163b), QUB26 (VNTR4052), and QUB3232 (VNTR3232). We found a high degree of diversity among the studied isolates (discriminatory index [D] = 0.9856), which were split into 65 different MIRU-VNTR types. An alternative short-format MIRU-VNTR typing targeting only the four loci with the highest variability values was found to offer an equivalent discriminatory index. Minimum spanning trees using the MIRU-VNTR data showed the hypothetical evolution of an apparent clonal group. MIRU-VNTR analysis was also applied to the isolates of 176 animals from 15 farms infected by M. bovis SB0121; in 10 farms, the analysis revealed the coexistence of two to five different MIRU types differing in one to six loci, which highlights the frequency of undetected heterogeneity.
Resumo:
Clays and claystones are used as backfill and barrier materials in the design of waste repositories, because they act as hydraulic barriers and retain contaminants. Transport through such barriers occurs mainly by molecular diffusion. There is thus an interest to relate the diffusion properties of clays to their structural properties. In previous work, we have developed a concept for up-scaling pore-scale molecular diffusion coefficients using a grid-based model for the sample pore structure. Here we present an operational algorithm which can generate such model pore structures of polymineral materials. The obtained pore maps match the rock’s mineralogical components and its macroscopic properties such as porosity, grain and pore size distributions. Representative ensembles of grains in 2D or 3D are created by a lattice Monte Carlo (MC) method, which minimizes the interfacial energy of grains starting from an initial grain distribution. Pores are generated at grain boundaries and/or within grains. The method is general and allows to generate anisotropic structures with grains of approximately predetermined shapes, or with mixtures of different grain types. A specific focus of this study was on the simulation of clay-like materials. The generated clay pore maps were then used to derive upscaled effective diffusion coefficients for non-sorbing tracers using a homogenization technique. The large number of generated maps allowed to check the relations between micro-structural features of clays and their effective transport parameters, as is required to explain and extrapolate experimental diffusion results. As examples, we present a set of 2D and 3D simulations and investigated the effects of nanopores within particles (interlayer pores) and micropores between particles. Archie’s simple power law is followed in systems with only micropores. When nanopores are present, additional parameters are required; the data reveal that effective diffusion coefficients could be described by a sum of two power functions, related to the micro- and nanoporosity. We further used the model to investigate the relationships between particle orientation and effective transport properties of the sample.
Resumo:
Background: Recently, Cipriani and colleagues examined the relative efficacy of 12 new-generation antidepressants on major depression using network meta-analytic methods. They found that some of these medications outperformed others in patient response to treatment. However, several methodological criticisms have been raised about network meta-analysis and Cipriani’s analysis in particular which creates the concern that the stated superiority of some antidepressants relative to others may be unwarranted. Materials and Methods: A Monte Carlo simulation was conducted which involved replicating Cipriani’s network metaanalysis under the null hypothesis (i.e., no true differences between antidepressants). The following simulation strategy was implemented: (1) 1000 simulations were generated under the null hypothesis (i.e., under the assumption that there were no differences among the 12 antidepressants), (2) each of the 1000 simulations were network meta-analyzed, and (3) the total number of false positive results from the network meta-analyses were calculated. Findings: Greater than 7 times out of 10, the network meta-analysis resulted in one or more comparisons that indicated the superiority of at least one antidepressant when no such true differences among them existed. Interpretation: Based on our simulation study, the results indicated that under identical conditions to those of the 117 RCTs with 236 treatment arms contained in Cipriani et al.’s meta-analysis, one or more false claims about the relative efficacy of antidepressants will be made over 70% of the time. As others have shown as well, there is little evidence in these trials that any antidepressant is more effective than another. The tendency of network meta-analyses to generate false positive results should be considered when conducting multiple comparison analyses.
Resumo:
(Full text is available at http://www.manu.edu.mk/prilozi). New generation genomic platforms enable us to decipher the complex genetic basis of complex diseases and Balkan Endemic Nephropathy (BEN) at a high-throughput basis. They give valuable information about predisposing Single Nucleotide Polymorphisms (SNPs), Copy Number Variations (CNVs) or Loss of Heterozygosity (LOH) (using SNP-array) and about disease-causing mutations along the whole sequence of candidate-genes (using Next Generation Sequencing). This information could be used for screening of individuals in risk families and moving the main medicine stream to the prevention. They also might have an impact on more effective treatment. Here we discuss these genomic platforms and report some applications of SNP-array technology in a case with familial nephrotic syndrome. Key words: complex diseases, genome wide association studies, SNP, genomic arrays, next generation sequ-encing.
Resumo:
A method for the culturing and propagation of ovine bone marrow-derived macrophages (BMM) in vitro is described. Bone marrow cells from sterna of freshly slaughtered sheep were cultured in hydrophobic (teflon foil) bags in the presence of high serum concentrations (20% autologous serum and 20% fetal calf serum). During an 18 day culture period in the absence of added conditioned medium, and without medium change, a strong enrichment of mononuclear phagocytes was achieved. Whereas the number of macrophages increased four to fivefold during this time, granulocytes, lymphoid cells, stem cells and undifferentiated progenitor cells were reduced to less than 3% of their numbers at Day 0. This resulted in BMM populations of 94 +/- 3% purity. These cells had morphological and histochemical characteristics of differentiated macrophages, and they performed functions similar to those of non-activated, unprimed human monocyte-derived macrophages. Thus, they avidly ingested erythrocytes coated with IgG of heterologous or homologous origin. They expressed a modest level of procoagulant activity, but upon triggering with lipopolysaccharide (LPS), a marked increase in cell-associated procoagulant activity was observed. LPS triggering promoted the secretion of interleukin-1, as evidenced by measurement of murine thymocyte costimulatory activity, and transforming growth factor-beta. Using the mouse L929 cell cytotoxicity assay as an indication of tumor necrosis factor (TNF) activity, no TNF activity was detected in the same supernatants, a result possibly due to species restriction. BMM generated low levels of O2- upon triggering with phorbol 12-myristate 13-acetate (PMA). On the other hand, no O2- production was observed upon stimulation with zymosan opsonized with ovine or human serum. Using luminol-enhanced chemiluminescence (CL) as a more sensitive indicator of an oxidative burst, both PMA or zymosan were able to trigger CL, but the response was subject to partial inhibition by sodium azide, an inhibitor of myeloperoxidase. This points to non-macrophage cells contributing also to the CL response, and is consistent with the view that unprimed BMM elicit a low oxidative burst upon triggering with strong inducers of a burst. Our functional characterization now allows us to apply priming and activation protocols and to relate their effect to functional alterations.
Resumo:
Biomarker research relies on tissue microarrays (TMA). TMAs are produced by repeated transfer of small tissue cores from a 'donor' block into a 'recipient' block and then used for a variety of biomarker applications. The construction of conventional TMAs is labor intensive, imprecise, and time-consuming. Here, a protocol using next-generation Tissue Microarrays (ngTMA) is outlined. ngTMA is based on TMA planning and design, digital pathology, and automated tissue microarraying. The protocol is illustrated using an example of 134 metastatic colorectal cancer patients. Histological, statistical and logistical aspects are considered, such as the tissue type, specific histological regions, and cell types for inclusion in the TMA, the number of tissue spots, sample size, statistical analysis, and number of TMA copies. Histological slides for each patient are scanned and uploaded onto a web-based digital platform. There, they are viewed and annotated (marked) using a 0.6-2.0 mm diameter tool, multiple times using various colors to distinguish tissue areas. Donor blocks and 12 'recipient' blocks are loaded into the instrument. Digital slides are retrieved and matched to donor block images. Repeated arraying of annotated regions is automatically performed resulting in an ngTMA. In this example, six ngTMAs are planned containing six different tissue types/histological zones. Two copies of the ngTMAs are desired. Three to four slides for each patient are scanned; 3 scan runs are necessary and performed overnight. All slides are annotated; different colors are used to represent the different tissues/zones, namely tumor center, invasion front, tumor/stroma, lymph node metastases, liver metastases, and normal tissue. 17 annotations/case are made; time for annotation is 2-3 min/case. 12 ngTMAs are produced containing 4,556 spots. Arraying time is 15-20 hr. Due to its precision, flexibility and speed, ngTMA is a powerful tool to further improve the quality of TMAs used in clinical and translational research.
Resumo:
Oscillations between high and low values of the membrane potential (UP and DOWN states respectively) are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon’s implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs) of the exponential integrate and fire (EIF) model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike’s preceding ISI. As we show, the EIF’s exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron’s ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing computational theories about UP states during slow wave sleep and present possible extensions of the model in the context of spike-frequency adaptation.
On degeneracy and invariances of random fields paths with applications in Gaussian process modelling
Resumo:
We study pathwise invariances and degeneracies of random fields with motivating applications in Gaussian process modelling. The key idea is that a number of structural properties one may wish to impose a priori on functions boil down to degeneracy properties under well-chosen linear operators. We first show in a second order set-up that almost sure degeneracy of random field paths under some class of linear operators defined in terms of signed measures can be controlled through the two first moments. A special focus is then put on the Gaussian case, where these results are revisited and extended to further linear operators thanks to state-of-the-art representations. Several degeneracy properties are tackled, including random fields with symmetric paths, centred paths, harmonic paths, or sparse paths. The proposed approach delivers a number of promising results and perspectives in Gaussian process modelling. In a first numerical experiment, it is shown that dedicated kernels can be used to infer an axis of symmetry. Our second numerical experiment deals with conditional simulations of a solution to the heat equation, and it is found that adapted kernels notably enable improved predictions of non-linear functionals of the field such as its maximum.
Resumo:
The absolute sign of local polarity in relation to the biological growth direction has been investigated for teeth cementum using phase sensitive second harmonic generation microscopy (PS-SHGM) and a crystal of 2-cyclooctylamino-5-nitropyridine (COANP) as a nonlinear optic (NLO) reference material. A second harmonic generation (SHG) response was found in two directions of cementum: radial (acellular extrinsic fibers that are oriented more or less perpendicular to the root surface) and circumferential (cellular intrinsic fibers that are oriented more or less parallel to the surface). A mono-polar state was demonstrated for acellular extrinsic cementum. However, along the different parts of cementum in circumferential direction, two corresponding domains were observed featuring an opposite sign of polarity indicative for a bi-polar microscopic state of cellular intrinsic cementum. The phase information showed that the orientation of radial collagen fibrils of cementum is regularly organized with the donor (D) groups pointing to the surface. Circumferential collagen molecules feature orientational disorder and are oriented up and down in random manner showing acceptor or donor groups at the surface of cementum. Considering that the cementum continues to grow in thickness throughout life, we can conclude that the cementum is growing circumferentially in two opposite directions and radially in one direction. A Markov chain type model for polarity formation in the direction of growth predicts D-groups preferably appearing at the fiber front.
Resumo:
Human resources managers often conduct assessment centers to evaluate candidates for a job position. During an assessment center, the candidates perform a series of tasks. The tasks require one or two assessors (e.g., managers or psychologists) that observe and evaluate the candidates. If an exercise is designed as a role-play, an actor is required who plays, e.g., an unhappy customer with whom the candidate has to deal with. Besides performing the tasks, each candidate has a lunch break within a prescribed time window. Each candidate should be observed by approximately half the number of the assessors; however, an assessor may not observe a candidate if they personally know each other. The planning problem consists of determining (1) resource-feasible start times of all tasks and lunch breaks and (2) a feasible assignment of assessors to candidates, such that the assessment center duration is minimized. We present a list-scheduling heuristic that generates feasible schedules for such assessment centers. We propose several novel techniques to generate the respective task lists. Our computational results indicate that our approach is capable of devising optimal or near-optimal schedules for real-world instances within short CPU time.
Resumo:
Importance In treatment-resistant schizophrenia, clozapine is considered the standard treatment. However, clozapine use has restrictions owing to its many adverse effects. Moreover, an increasing number of randomized clinical trials (RCTs) of other antipsychotics have been published. Objective To integrate all the randomized evidence from the available antipsychotics used for treatment-resistant schizophrenia by performing a network meta-analysis. Data Sources MEDLINE, EMBASE, Biosis, PsycINFO, PubMed, Cochrane Central Register of Controlled Trials, World Health Organization International Trial Registry, and clinicaltrials.gov were searched up to June 30, 2014. Study Selection At least 2 independent reviewers selected published and unpublished single- and double-blind RCTs in treatment-resistant schizophrenia (any study-defined criterion) that compared any antipsychotic (at any dose and in any form of administration) with another antipsychotic or placebo. Data Extraction and Synthesis At least 2 independent reviewers extracted all data into standard forms and assessed the quality of all included trials with the Cochrane Collaboration's risk-of-bias tool. Data were pooled using a random-effects model in a Bayesian setting. Main Outcomes and Measures The primary outcome was efficacy as measured by overall change in symptoms of schizophrenia. Secondary outcomes included change in positive and negative symptoms of schizophrenia, categorical response to treatment, dropouts for any reason and for inefficacy of treatment, and important adverse events. Results Forty blinded RCTs with 5172 unique participants (71.5% men; mean [SD] age, 38.8 [3.7] years) were included in the analysis. Few significant differences were found in all outcomes. In the primary outcome (reported as standardized mean difference; 95% credible interval), olanzapine was more effective than quetiapine (-0.29; -0.56 to -0.02), haloperidol (-0. 29; -0.44 to -0.13), and sertindole (-0.46; -0.80 to -0.06); clozapine was more effective than haloperidol (-0.22; -0.38 to -0.07) and sertindole (-0.40; -0.74 to -0.04); and risperidone was more effective than sertindole (-0.32; -0.63 to -0.01). A pattern of superiority for olanzapine, clozapine, and risperidone was seen in other efficacy outcomes, but results were not consistent and effect sizes were usually small. In addition, relatively few RCTs were available for antipsychotics other than clozapine, haloperidol, olanzapine, and risperidone. The most surprising finding was that clozapine was not significantly better than most other drugs. Conclusions and Relevance Insufficient evidence exists on which antipsychotic is more efficacious for patients with treatment-resistant schizophrenia, and blinded RCTs-in contrast to unblinded, randomized effectiveness studies-provide little evidence of the superiority of clozapine compared with other second-generation antipsychotics. Future clozapine studies with high doses and patients with extremely treatment-refractory schizophrenia might be most promising to change the current evidence.