69 resultados para Rajbhasha Ki Vikasyatra


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Inappropriate cross talk between mammals and their gut microbiota may trigger intestinal inflammation and drive extra-intestinal immune-mediated diseases. Epithelial cells constitute the interface between gut microbiota and host tissue, and may regulate host responses to commensal enteric bacteria. Gnotobiotic animals represent a powerful approach to study bacterial-host interaction but are not readily accessible to the wide scientific community. We aimed at refining a protocol that in a robust manner would deplete the cultivable intestinal microbiota of conventionally raised mice and that would prove to have significant biologic validity. Methodology/Principal Findings Previously published protocols for depleting mice of their intestinal microbiota by administering broad-spectrum antibiotics in drinking water were difficult to reproduce. We show that twice daily delivery of antibiotics by gavage depleted mice of their cultivable fecal microbiota and reduced the fecal bacterial DNA load by 400 fold while ensuring the animals' health. Mice subjected to the protocol for 17 days displayed enlarged ceca, reduced Peyer's patches and small spleens. Antibiotic treatment significantly reduced the expression of antimicrobial factors to a level similar to that of germ-free mice and altered the expression of 517 genes in total in the colonic epithelium. Genes involved in cell cycle were significantly altered concomitant with reduced epithelial proliferative activity in situ assessed by Ki-67 expression, suggesting that commensal microbiota drives cellular proliferation in colonic epithelium. Conclusion We present a robust protocol for depleting conventionally raised mice of their cultivatable intestinal microbiota with antibiotics by gavage and show that the biological effect of this depletion phenocopies physiological characteristics of germ-free mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases and their ligands (ephrins) have a pivotal role in the homeostasis of many adult organs and are widely expressed in the kidney. Glomerular diseases beginning with mesangiolysis can recover, with podocytes having a critical role in this healing process. We studied here the role of Eph signaling in glomerular disease recovery following mesangiolytic Thy1.1 nephritis in rats. EphB4 and ephrinBs were expressed in healthy glomerular podocytes and were upregulated during Thy1.1 nephritis, with EphB4 strongly phosphorylated around day 9. Treatment with NPV-BHG712, an inhibitor of EphB4 phosphorylation, did not cause glomerular changes in control animals. Nephritic animals treated with vehicle did not have morphological evidence of podocyte injury or loss; however, application of this inhibitor to nephritic rats induced glomerular microaneurysms, podocyte damage, and loss. Prolonged NPV-BHG712 treatment resulted in increased albuminuria and dysregulated mesangial recovery. Additionally, NPV-BHG712 inhibited capillary repair by intussusceptive angiogenesis (an alternative to sprouting angiogenesis), indicating a previously unrecognized role of podocytes in regulating intussusceptive vessel splitting. Thus, our results identify EphB4 signaling as a pathway allowing podocytes to survive transient capillary collapse during glomerular disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypertension is a well-known complication in children on renal replacement therapy and an important risk factor for cardiovascular disease in later life. In order to define the prevalence of and risk factors for hypertension among children, we enrolled 3337 pediatric patients from 15 countries in the ESPN/ERA-EDTA Registry of whom 464 were on hemodialysis, 851 on peritoneal dialysis, and 2023 had received a renal allograft. Hypertension was defined as either systolic or diastolic blood pressures in the 95th percentile or greater for age, height, and gender or use of antihypertensive medication. Analyses were adjusted for age, gender, duration, and modality of renal replacement therapy. In 10 countries in which information on the use of antihypertensive medication was available, hypertension was present in over two-thirds of hemodialysis, peritoneal dialysis, or transplant patients. Blood pressure values above the 95th percentile were significantly more prevalent in very young patients (under 3 years) compared to 13- to 17-year olds (odds ratio 2.47), during the first year compared to over 5 years of renal replacement therapy (odds ratio 1.80), and in patients on hemodialysis compared to transplant recipients or those on peritoneal dialysis (odds ratios of 2.48 and 1.59, respectively). Over time, mean blood pressures decreased in both hemodialysis and transplant patients, but not in peritoneal dialysis patients. Hence, our findings highlight the extent of the problem of hypertension in children with end-stage renal disease in Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the hypothesis was tested that the size of gastrointestinal tract (GIT) mucosal components and rates of epithelial cell proliferation and apoptosis change with increasing age. The aims were to quantitatively examine GIT histomorphology and to determine mucosal epithelial cell proliferation and apoptosis rates in neonatal (<48 h old) and adult (8 to 11.5 yr old) dogs. Morphometrical analyses were performed by light microscopy with a video-based, computer-linked system. Cell proliferation and apoptosis of the GIT epithelium were evaluated by counting the number of Ki-67 and caspase-3-positive cells, respectively, using immunohistochemical methods. Thickness of mucosal, glandular, subglandular, submucosal and muscular layers, crypt depths, villus heights, and villus widths were consistently greater (P < 0.05 to P < 0.001), whereas villus height/crypt depth ratios were smaller (P < 0.001) in adult than in neonatal dogs. The number of Ki-67-positive cells in stomach, small intestine, and colon crypts, but not in villi, was consistently greater (P < 0.01) in neonatal than in adult dogs. In contrast, the number of caspase-3-positive cells in crypts of the stomach, small intestine, and colon and in villi was not significantly influenced by age. In conclusion, canine GIT mucosal morphology and epithelial cell proliferation rates, but not apoptosis rates, change markedly from birth until adulthood is reached.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rabbits are born blind and deaf and receive unusually limited maternal care. Consequently, their suckling young heavily rely on the olfactory cue for nipple attachment. However, the postnatal morphofunctional adaptations of olfactory mucosa (OM) are not fully elucidated. To clarify on the extent and the pattern of refinement of the OM following birth in the rabbit, morphologic and morphometric analysis of the mucosa were done at neonatal (0-1 days), suckling (2 weeks), weanling (4 weeks), and adult (6-8 months) stages of postnatal development. In all the age groups, the basic components of the OM were present. However, proliferative activity of cells of the mucosal epithelium decreased with increasing age as revealed by Ki-67 immunostaining. Diameters of axon bundles, packing densities of olfactory cells, and cilia numbers per olfactory cell knob increased progressively with age being 5.5, 2.1, and 2.6 times, respectively, in the adult as compared with the neonate. Volume fraction values for the bundles increased by 5.3% from birth to suckling age and by 7.4% from weaning to adulthood and the bundle cores were infiltrated with blood capillaries in all ages except in the adult where such vessels were lacking. The pattern of cilia projection from olfactory cell knobs also showed age-related variations, that is, arose as a tuft from the tips of the knobs in neonates and sucklings and in a radial pattern from the knob bases in weanlings and adults. These morphological changes may be attributed to the high olfactory functional demand associated with postnatal development in the rabbit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: There are inherent conceptual problems in investigating the pharmacodynamics of cancer drugs in vivo. One of the few possible approaches is serial biopsies in patients. However, this type of research is severely limited by methodological and ethical constraints. MATERIALS AND METHODS: A modified 3-dimensional tissue culture technique was used to culture human tumor samples, which had been collected during routine cancer operations. Twenty tumor samples of patients with non-small cell lung cancer (NSCLC) were cultured ex vivo for 120 h and treated with mitomycin C, taxotere and cisplatin. The cytotoxic activity of the anticancer agents was quantified by assessing the metabolic activity of treated tumor cultures and various assays of apoptosis and gene expression were performed. RESULTS: The proliferative activity of the tissue was maintained in culture as assessed by Ki-67 staining. Mitomycin C, cisplatin and taxotere reduced the metabolic activity of the tumor tissue cultures by 51%, 29% and 20%, respectively, at 120 h. The decrease in metabolic activity corresponded to the induction of apoptosis as demonstrated by the typical morphological changes, such as chromatin condensation and nuclear fragmentation. In addition, activated caspase-3 could be verified in apoptotic cells by immunohistochemistry. To verify functional aspects of apoptosis, the induction of chemotherapy-induced cell death was inhibited with the caspase inhibitor z-VAD.fmk. RNA was extracted from the tissue cultures after 120 h of ex vivo drug treatment and was of sufficient quality to allow quantitative PCR. CONCLUSION: The 3-dimensional ex vivo culture technique is a useful method to assess the molecular effects of pharmacological interventions in human cancer samples in vitro. This culture technique could become an important tool for drug development and for the prediction of in vivo drug efficacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypoxia of renal medulla is a key factor implicated in the development of drug-induced renal failure. Drugs are known to influence renal hemodynamics and, subsequently, affect renal tissue oxygenation. Changes in renal oxygenation can be assessed non-invasively in humans using blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI). This study was designed to test the acute effects of administration of specific drugs in healthy human kidney oxygenation using BOLD-MRI. Acute changes in renal tissue oxygenation induced by the non-steroidal anti-inflammatory drug indomethacin, the iodinated radio-contrast media (RCM) iopromidum, and the calcineurin inhibitors cyclosporine micro-emulsion (CsA-ME) and tracrolimus were studied in 30 healthy volunteers. A modified Multi Echo Data Image Combination sequence was used to acquire 12 T(2)(*)-weighted images. Four coronal slices were selected to cover both kidneys. The mean R(2)(*) (1/T(2)(*)) values determined in medulla and cortex showed no significant changes induced by indomethacin and tacrolimus administration. CsA-ME decreased medullary (P=0.008) and cortical (P=0.004) R(2)(*) values 2 h after ingestion. Iopromidum caused a significant increase in medullary R(2)(*) within the first 20 min after injection (P<0.001), whereas no relevant changes were observed in renal cortex. None of the measurements showed left-right kidney differences. Significant differences in renal medullary oxygenation were evidenced between female and male subjects (P=0.013). BOLD-MRI was efficient to show effects of specific drugs in healthy renal tissue. Cyclosporine increased renal medullary oxygenation 2 h after ingestion of a single dose, whereas indomethacin and tacrolimus showed no effect on renal oxygenation. Injection of iodinated RCM decreased renal medullary oxygenation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic renal allograft rejection is characterized by alterations in the extracellular matrix compartment and in the proliferation of various cell types. These features are controlled, in part by the metzincin superfamily of metallo-endopeptidases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase (ADAM) and meprin. Therefore, we investigated the regulation of metzincins in the established Fisher to Lewis rat kidney transplant model. Studies were performed using frozen homogenates and paraffin sections of rat kidneys at day 0 (healthy controls) and during periods of chronic rejection at day +60 and day +100 following transplantation. The messenger RNA (mRNA) expression was examined by Affymetrix Rat Expression Array 230A GeneChip and by real-time Taqman polymerase chain reaction analyses. Protein expression was studied by zymography, Western blot analyses, and immunohistology. mRNA levels of MMPs (MMP-2/-11/-12/-14), of their inhibitors (tissue inhibitors of metalloproteinase (TIMP)-1/-2), ADAM-17 and transforming growth factor (TGF)-beta1 significantly increased during chronic renal allograft rejection. MMP-2 activity and immunohistological staining were augmented accordingly. The most important mRNA elevation was observed in the case of MMP-12. As expected, Western blot analyses also demonstrated increased production of MMP-12, MMP-14, and TIMP-2 (in the latter two cases as individual proteins and as complexes). In contrast, mRNA levels of MMP-9/-24 and meprin alpha/beta had decreased. Accordingly, MMP-9 protein levels and meprin alpha/beta synthesis and activity were downregulated significantly. Members of metzincin families (MMP, ADAM, and meprin) and of TIMPs are differentially regulated in chronic renal allograft rejection. Thus, an altered pattern of metzincins may represent novel diagnostic markers and possibly may provide novel targets for future therapeutic interventions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many mechanisms involved in the pathogenesis of chronic enteropathies or host-pathogen interactions in canine intestine have not been elucidated so far. Next to the clinical and in vivo research tools, an in vitro model of canine intestinal cell culture would be very helpful for studies at the cellular level. Therefore, the purpose of this study was to establish and characterize a primary canine duodenal epithelial cell culture. Neonatal duodenum was disrupted with trypsin-ethylenediaminetetraacetic acid (EDTA) and the mucosa scraped off and digested with collagenase and dispase. After centrifugation on a 2% sorbitol gradient, the cells were incubated at 37 degrees C in OptiMEM supplemented with Primocin, epidermal growth factor, insulin, hydrocortisone, and 10% fetal calf serum (FCS). After 24 h, the FCS concentration was reduced to 2.5%, and the temperature decreased to 33 degrees C. With this method, the cultures were growing to confluent monolayers within 5-6 d and remained viable for an average of 2 wk. Their epithelial nature was confirmed by electron microscopy and immunofluorescence staining using antibodies directed against specific cytokeratins, desmosomes, and tight junctions. The intestinal cells proliferated, as evidenced by immunolabeling with a Ki-67 antibody, and cryptal cell subpopulations could be identified. Furthermore, alkaline phosphatase and sucrase activity were detected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM: Peptide receptor radionuclide therapy using the somatostatin analogue [(177)Lu-DOTA(0),Tyr(3)]octreotate is a convincing treatment modality for metastasized neuroendocrine tumors. Therapeutic doses are administered in 4 cycles with 6-10 week intervals. A high somatostatin receptor density on tumor cells is a prerequisite at every administration to enable effective therapy. In this study, the density of the somatostatin receptor subtype 2 (sst2) was investigated in the rat CA20948 pancreatic tumor model after low dose [(177)Lu-DOTA(0), Tyr(3)]octreotate administration resulting in approximately 20 Gy tumor radiation absorbed dose, whereas 60 Gy is needed to induce complete tumor regression in these and the majority of tumors. METHODS: Sixteen days after inoculation of the CA20948 tumor, male Lewis rats were injected with 185 MBq [(177)Lu-DOTA(0),Tyr(3)]octreotate to initiate a decline in tumor size. Approximately 40 days after injection, tumors re-grew progressively after initial response. Quantification of sst2 expression was performed using in vitro autoradiography on frozen sections of three groups: control (not-treated) tumors, tumors in regression and tumors in re-growth. Histology and proliferation were determined using HE- and anti-Ki-67-staining. RESULTS: The sst2 expression on CA20948 tumor cells decreased significantly after therapy to 5% of control level. However, tumors escaping from therapy showed an up-regulated sst2 level of 2-5 times higher sst2 density compared to control tumors. CONCLUSION: After a suboptimal therapeutic dose of [(177)Lu-DOTA(0),Tyr(3)]octreotate, escape of tumors is likely to occur. Since these cells show an up-regulated sst2 receptor density, a next therapeutic administration of radiolabelled sst2 analogue can be expected to be highly effective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To assess the relationship between renal plasma flow (ERPF) or glomerular filtration rate (GFR) and the levels of norepinephrine (NE) or epinephrine (E) in plasma or urine in the presence of progressive degrees of non-oliguric renal functional impairment, these variables were assessed simultaneously in 18 normal subjects, 72 with parenchymal kidney disease and 14 with essential hypertension. ERPF and GFR were lower (P less than 0.01 to 0.001) in the groups with renal disease (mean +/- SD, 340 +/- 230 and 68 +/- 43 ml/min/1.73 m2, respectively) or essential hypertension (434 +/- 101 and 97 +/- 25 ml/min/1.73 m2) than normal subjects (597 +/- 133 and 118 +/- 14 ml/min/1.73 m2). Plasma and urinary NE and E did not differ significantly among groups and were unrelated with ERPF or GFR (range 4 to 160 ml/min/1.73 m2), except for reduced (P less than 0.001) urinary NE and E excretion in the presence of a GFR less than 20 ml/min. Subgroups with renal disease and a normal (N = 39) or high blood pressure (N = 33) also were comparable in their plasma and urinary NE and E, while ERPF and GFR tended to be lower in hypertensive patients. It is concluded that a chronic reduction in excretory kidney function may have no relevant impact on circulating levels of NE and E per se, although their urinary excretion falls distinctly at the stage of advanced renal failure. These aspects deserve consideration when pathogenetic or diagnostic studies of catecholamines are performed in normotensive or hypertensive patients with impaired kidney function.