20 resultados para Radiation mechanisms: general


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The optimal defence hypothesis (ODH) predicts that tissues that contribute most to a plant's fitness and have the highest probability of being attacked will be the parts best defended against biotic threats, including herbivores. In general, young sink tissues and reproductive structures show stronger induced defence responses after attack from pathogens and herbivores and contain higher basal levels of specialized defensive metabolites than other plant parts. However, the underlying physiological mechanisms responsible for these developmentally regulated defence patterns remain unknown. Scope This review summarizes current knowledge about optimal defence patterns in above- and below-ground plant tissues, including information on basal and induced defence metabolite accumulation, defensive structures and their regulation by jasmonic acid (JA). Physiological regulations underlying developmental differences of tissues with contrasting defence patterns are highlighted, with a special focus on the role of classical plant growth hormones, including auxins, cytokinins, gibberellins and brassinosteroids, and their interactions with the JA pathway. By synthesizing recent findings about the dual roles of these growth hormones in plant development and defence responses, this review aims to provide a framework for new discoveries on the molecular basis of patterns predicted by the ODH. Conclusions Almost four decades after its formulation, we are just beginning to understand the underlying molecular mechanisms responsible for the patterns of defence allocation predicted by the ODH. A requirement for future advances will be to understand how developmental and defence processes are integrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The radiation dose rates at flight altitudes can increase by orders of magnitude for a short time during energetic solar cosmic ray events, so called ground level enhancements (GLEs). Especially at high latitudes and flight altitudes, solar energetic particles superposed on galactic cosmic rays may cause radiation that exceeds the maximum allowed dosage limit for the general public. Therefore the determination of the radiation dose rate during GLEs should be as reliable as possible. Radiation dose rates along flight paths are typically determined by computer models that are based on cosmic ray flux and anisotropy parameters derived from neutron monitor and/or satellite measurements. The characteristics of the GLE on 15 April 2001 (GLE60) were determined and published by various authors. In this work we compare these results and investigate the consequences on the computed radiation dose rates along selected flight paths. In addition, we compare the computed radiation dose rates with measurements that were made during GLE60 on board two transatlantic flights.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aphids are important herbivores of both wild and cultivated plants. Plants rely on unique mechanisms of recognition, signalling and defence to cope with the specialized mode of phloem feeding by aphids. Aspects of the molecular mechanisms underlying aphid-plant interactions are beginning to be understood. Recent advances include the identification of aphid salivary proteins involved in host plant manipulation, and plant receptors involved in aphid recognition. However, a complete picture of aphid-plant interactions requires consideration of the ecological outcome of these mechanisms in nature, and the evolutionary processes that shaped them. Here we identify general patterns of resistance, with a special focus on recognition, phytohormonal signalling, secondary metabolites and induction of plant resistance. We discuss how host specialization can enable aphids to co-opt both the phytohormonal responses and defensive compounds of plants for their own benefit at a local scale. In response, systemically induced resistance in plants is common and often involves targeted responses to specific aphid species or even genotypes. As co-evolutionary adaptation between plants and aphids is ongoing, the stealthy nature of aphid feeding makes both the mechanisms and outcomes of these interactions highly distinct from those of other herbivore-plant interactions. © 2016 Macmillan Publishers Limited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new radiation scheme for the Oxford Planetary Unified Model System for Venus, suitable for the solar and thermal bands. This new and fast radiative parameterization uses a different approach in the two main radiative wavelength bands: solar radiation (0.1-5.5 mu m) and thermal radiation (1.7-260 mu m). The solar radiation calculation is based on the delta-Eddington approximation (two-stream-type) with an adding layer method. For the thermal radiation case, a code based on an absorptivity/emissivity formulation is used. The new radiative transfer formulation implemented is intended to be computationally light, to allow its incorporation in 3D global circulation models, but still allowing for the calculation of the effect of atmospheric conditions on radiative fluxes. This will allow us to investigate the dynamical-radiative-microphysical feedbacks. The model flexibility can be also used to explore the uncertainties in the Venus atmosphere such as the optical properties in the deep atmosphere or cloud amount. The results of radiative cooling and heating rates and the global-mean radiative-convective equilibrium temperature profiles for different atmospheric conditions are presented and discussed. This new scheme works in an atmospheric column and can be easily implemented in 3D Venus global circulation models. (C) 2014 Elsevier Ltd. All rights reserved.