119 resultados para RNA polymerases


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging evidence has shown that oxidation of RNA, including messenger RNA (mRNA), is elevated in several age-related diseases, although investigation of oxidized levels of individual RNA species has been limited. Recently we reported that an aldehyde reactive probe (ARP) quantitatively reacts with oxidatively modified depurinated/depyrimidinated (abasic) RNA. Here we report a novel method to isolate oxidized RNA using ARP and streptavidin beads. An oligo RNA containing abasic sites that were derivatized with ARP was pulled down by streptavidin beads, whereas a control oligo RNA was not. In vitro oxidized RNA, as well as total cellular RNA, isolated from oxidatively stressed cells was also pulled down, dependent on oxidation level, and concentrated in the pull-down fraction. Quantitative reverse transcription polymerase chain reaction (RT-PCR) using RNA in the pull-down fraction demonstrated that several gene transcripts were uniquely increased in the fraction by oxidative stress. Thus, our method selectively concentrates oxidized RNA by pull-down and enables the assessment of oxidation levels of individual RNA species. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restriction of proteins to discrete subcellular regions is a common mechanism to establish cellular asymmetries and depends on a coordinated program of mRNA localization and translation control. Many processes from the budding of a yeast to the establishment of metazoan embryonic axes and the migration of human neurons, depend on this type of cell polarization. How factors controlling transport and translation assemble to regulate at the same time the movement and translation of transported mRNAs, and whether these mechanisms are conserved across kingdoms is not yet entirely understood. In this review we will focus on some of the best characterized examples of mRNA transport machineries, the "yeast locasome" as an example of RNA transport and translation control in unicellular eukaryotes, and on the Drosophila Bic-D/Egl/Dyn RNA localization machinery as an example of RNA transport in higher eukaryotes. This focus is motivated by the relatively advanced knowledge about the proteins that connect the localizing mRNAs to the transport motors and the many well studied proteins involved in translational control of specific transcripts that are moved by these machineries. We will also discuss whether the core of these RNA transport machineries and factors regulating mRNA localization and translation are conserved across eukaryotes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing evidence suggest that the long "untranslated" region (UTR) between the matrix (M) and the fusion (F) proteins of morbilliviruses has a functional role. In canine distemper virus (CDV), the F 5' UTR was recently shown to code for a long F signal peptide (Fsp). Subsequently, it was reported that the M/F UTRs combined with the long Fsp were synergistically regulating the F mRNA and protein expression, thereby modulating virulence. Unique to CDV, a short putative open reading frame (ORF) has been identified within the wild-type CDV-M 3' UTR (termed M2). Here, we investigated whether M2 was expressed from the genome of the virulent and demyelinating A75/17-CDV strain. An expression plasmid encoding the M2 ORF tagged both at its N-terminal (HA) and C-terminal domains (RFP), was first constructed. Then, a recombinant virus with its putative M2 ORF replaced by HA-M2-RFP was successfully recovered from cDNA (termed recA75/17(green)-HA-M2-RFP). M2 expression in cells transfected or infected with these mutants was studied by immunoprecipitation, immunofluorescence, immunoblot and flow cytometry analyses. Although fluorescence was readily detected in HA-M2-RFP-transfected cells, absence of red fluorescence emission in several recA75/17(green)-HA-M2-RFP-infected cell types suggested lack of M2 biosynthesis, which was confirmed by the other techniques. Consistent with these data, no functional role of the short polypeptide was revealed by infecting various cell types with HA-M2-RFP over-expressing or M2-knockout recombinant viruses. Thus, in sharp contrast to the CDV-F 5' UTR reported to translate a long Fsp, our data provided evidence that the CDV-M 3' UTR does not express any polypeptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemotherapeutic drug resistance is one of the major causes for treatment failure in high-risk neuroblastoma (NB), the most common extra cranial solid tumor in children. Poor prognosis is typically associated with MYCN amplification. Here, we utilized a loss-of-function kinome-wide RNA interference screen to identify genes that cause cisplatin sensitization. We identified fibroblast growth factor receptor 2 (FGFR2) as an important determinant of cisplatin resistance. Pharmacological inhibition of FGFR2 confirmed the importance of this kinase in NB chemoresistance. Silencing of FGFR2 sensitized NB cells to cisplatin-induced apoptosis, which was regulated by the downregulation of the anti-apoptotic proteins BCL2 and BCLX(L). Mechanistically, FGFR2 was shown to activate protein kinase C-δ to induce BCL2 expression. FGFR2, as well as the ligand fibroblast growth factor-2, were consistently expressed in primary NB and NB cell lines, indicating the presence of an autocrine loop. Expression analysis revealed that FGFR2 correlates with MYCN amplification and with advanced stage disease, demonstrating the clinical relevance of FGFR2 in NB. These findings suggest a novel role for FGFR2 in chemoresistance and provide a rational to combine pharmacological inhibitors against FGFR2 with chemotherapeutic agents for the treatment of NB.Oncogene advance online publication, 1 October 2012; doi:10.1038/onc.2012.416.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we demonstrate RNA interference mediated knock-down of target gene expression in Echinococcus multilocularis primary cells on both the transcriptional and translational level. In addition, we report on an improved method for generating E. multilocularis primary cell mini-aggregates from in vitro cultivated metacestode vesicles, and on the cultivation of small numbers of small interfering RNA-transfected cells in vitro over an extended period of time. This allows assessments on the effects of RNA interference performed on Echinococcus primary cells with regard to growth, proliferation, differentiation of the parasite and the formation of novel metacestode vesicles in vitro.