18 resultados para RARE EARTH ELEMENTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development and improvement of MC-ICP-MS instruments have fueled the growth of Lu–Hf geochronology over the last two decades, but some limitations remain. Here, we present improvements in chemical separation and mass spectrometry that allow accurate and precise measurements of 176Hf/177Hf and 176Lu/177Hf in high-Lu/Hf samples (e.g., garnet and apatite), as well as for samples containing sub-nanogram quantities of Hf. When such samples are spiked, correcting for the isobaric interference of 176Lu on 176Hf is not always possible if the separation of Lu and Hf is insufficient. To improve the purification of Hf, the high field strength elements (HFSE, including Hf) are first separated from the rare earth elements (REE, including Lu) on a first-stage cation column modified after Patchett and Tatsumoto (Contrib. Mineral. Petrol., 1980, 75, 263–267). Hafnium is further purified on an Ln-Spec column adapted from the procedures of Münker et al. (Geochem., Geophys., Geosyst., 2001, DOI: 10.1029/2001gc000183) and Wimpenny et al. (Anal. Chem., 2013, 85, 11258–11264) typically resulting in Lu/Hf < 0.0001, Zr/Hf < 1, and Ti/Hf < 0.1. In addition, Sm–Nd and Rb–Sr separations can easily be added to the described two-stage ion-exchange procedure for Lu–Hf. The isotopic compositions are measured on a Thermo Scientific Neptune Plus MC-ICP-MS equipped with three 1012 Ω resistors. Multiple 176Hf/177Hf measurements of international reference rocks yield a precision of 5–20 ppm for solutions containing 40 ppb of Hf, and 50–180 ppm for 1 ppb solutions (=0.5 ng sample Hf 0.5 in ml). The routine analysis of sub-ng amounts of Hf will facilitate Lu–Hf dating of low-concentration samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of crystal chemistry and melt composition on the control of clinopyroxene/melt element partitioning (D) during the assimilation of olivine/peridotite by felsic magma have been investigated in Mesozoic high-Mg diorites from North China. The assimilation resulted in significant increase of Mg, Cr and Ni and only slight (< 30%) decrease of incompatible elements of the magma, and the compositional variations have been mirrored by the normally and reversely zoned clinopyroxene microphenocrysts formed at the early stage of the magma evolution. The Mg# [100 × Mg / (Mg + Fe)] values of the reversely zoned clinopyroxenes increase from 65 to 75 in the core to 85–90 in the high-Mg midsection, and reduce back to 73–79 at the rim. Trace element profiles across all these clinopyroxene domains have been measured by LA-ICP-MS. The melt trace element composition has been constrained from bulk rock analyses of the fine-grained low- and high-Mg diorites. Clinopyroxene/melt partition coefficients for rare earth elements (REE) and Y in the high-Mg group zonings (Mg# > 73–79, DDy < 1.2) are positively correlated with tetrahedral IVAl and increase by a factor of 3–4 as tetrahedral IVAl increases from 0.01 to 0.1 per formula unit (pfu). These systematic variations are interpreted to be controlled by the clinopyroxene composition. In contrast, partition coefficients for low-Mg group zonings (Mg# < 75–79, DDy > 1.2) are elevated by up to an order of magnitude (for REE and Y) or more (for Zr and Hf) at similar IVAl, indicating dominant control of melt composition/structure. DZr and DHf show a larger sensitivity to the compositional change of crystal and melt than DREE. DTi values for the low- and high-Mg zonings show a uniform dependence on IVAl. DSr and DLi are insensitive to the compositional change of clinopyroxene and melt, resulting in Sr depletions in the clinopyroxene zonings with elevated REE without crystallization of plagioclase. Our observations show that crystal chemistry and melt composition/structure may alternatively control clinopyroxene/melt partitioning during the assimilation of peridotite by felsic magma, and may be useful for deciphering clinopyroxene compositions and related crust–mantle processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely accepted that stabilization of the continental crust requires the presence of sub-continental lithospheric mantle. However, the degree of melt depletion required to stabilize the lithosphere and whether widespread refertilization is a significant process remain unresolved. Here, major and trace element, including platinum group elements (PGE), characterization of 40 mantle xenoliths from 13 localities is used to constrain the melt depletion, refertilization and metasomatic history of lithospheric mantle underneath the micro-continent Zealandia. Our previously published Re–Os isotopic data for a subset of these xenoliths indicate Phanerozoic to Paleoproterozoic ages and, reinterpreted with the new major and trace element data presented here, demonstrate that a large volume (>2 million km3) of lithospheric mantle with an age of 1·99 ± 0·21 Ga is present below the much younger crust of Zealandia. A peritectic melting model using moderately incompatible trace elements (e.g. Yb) in bulk-rocks demonstrates that these peridotites experienced a significant range of degrees of partial melting, between 3 and 28%. During subsolidus equilibration clinopyroxene gains significant rare earth elements (REE), which then leads to the underestimation of the degree of partial melting by ≤12% in fertile xenoliths. A new approach taking into account the effects of subsolidus re-equilibration on clinopyroxene composition effectively removes discrepancies in the calculated degree of melting and provides consistent estimates of between 4 and 29%. The estimated amount of melting is independent of the Re–Os model ages of the samples. The PGE patterns record simple melt depletion histories and the retention of primary base metal sulfides in the majority of the xenoliths. A rapid decrease in Pt/IrN observed at c. 1·0 wt % Al2O3 is a direct result of the exhaustion of sulfide in the mantle residue at c. 20–25% partial melting and the inability of Pt to form a stable alloy phase. Major elements preserve evidence for refertilization by a basaltic component that resulted in the formation of secondary clinopyroxene and low-forsterite olivine. The majority of xenoliths show the effects of cryptic metasomatic overprinting, ranging from minor to strong light REE enrichments in bulk-rocks (La/YbN = 0·16–15·9). Metasomatism is heterogeneous, with samples varying from those with weak REE enrichment and notable positive Sr and U–Th anomalies and negative Nb–Ta anomalies in clinopyroxene to those that have extremely high concentrations of REE, Th–U and Nb. Chemical compositions are consistent with a carbonatitic component contributing to the metasomatism of the lithosphere under Zealandia. Notably, the intense metasomatism of the samples did not affect the PGE budget of the peridotites as this was controlled by residual sulfides.