21 resultados para Protozoa.
Resumo:
The thiazolide nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) is composed of a nitrothiazole- ring and a salicylic acid moiety, which are linked together through an amide bond. NTZ exhibits a broad spectrum of activities against a wide range of helminths, protozoa, enteric bacteria, and viruses infecting animals and humans. Since the first synthesis of the drug, a number of derivatives of NTZ have been produced, which are collectively named thiazolides. These are modified versions of NTZ, which include the replacement of the nitro group with bromo-, chloro-, or other functional groups, and the differential positioning of methyl- and methoxy-groups on the salicylate ring. The presence of a nitro group seems to be the prerequisite for activities against anaerobic or microaerophilic parasites and bacteria. Intracellular parasites and viruses, however, are susceptible to non-nitro-thiazolides with equal or higher effectiveness. Moreover, nitro- and bromo-thiazolides are effective against proliferating mammalian cells. Biochemical and genetic approaches have allowed the identification of respective targets and the molecular basis of resistance formation. Collectively, these studies strongly suggest that NTZ and other thiazolides exhibit multiple mechanisms of action. In microaerophilic bacteria and parasites, the reduction of the nitro group into a toxic intermediate turns out to be the key factor. In proliferating mammalian cells, however, bromo- and nitro-thiazolides trigger apoptosis, which may also explain their activities against intracellular pathogens. The mode of action against helminths may be similar to mammalian cells but has still not been elucidated.
Resumo:
The procyclic form of Trypanosoma brucei colonises the gut of its insect vector, the tsetse fly. GPEET and EP procyclins constitute the parasite's surface coat at this stage of the life cycle, and the presence or absence of GPEET distinguishes between early and late procyclic forms, respectively. Differentiation from early to late procyclic forms in vivo occurs in the fly midgut and can be mimicked in culture. Our analysis of this transition in vitro delivered new insights into the process of GPEET repression. First, we could show that parasites followed a concrete sequence of events upon triggering differentiation: after undergoing an initial growth arrest, cells lost GPEET protein, and finally late procyclic forms resumed proliferation. Second, we determined the stability of both GPEET and EP mRNA during differentiation. GPEET mRNA is exceptionally stable in early procyclic forms, with a half-life >6h. The GPEET mRNA detected in late procyclic form cultures is a mixture of transcripts from both bona fide late procyclic forms and GPEET-positive 'laggard' parasites present in these cultures. However, its stability was clearly reduced during differentiation and in late procyclic form cultures. Alternatively processed GPEET transcripts were enriched in samples from late procyclic forms, suggesting that altered mRNA processing might contribute to repression of GPEET in this developmental stage. In addition, we detected GPEET transcripts with non-templated oligo(U) tails that were enriched in late procyclic forms. To the best of our knowledge, this is the first study reporting a uridylyl-tailed, nuclear-encoded mRNA species in trypanosomatids or any other protozoa.
Resumo:
We introduce ciliated protozoa, and more specifically the stichotrichous ciliates Oxytricha and Stylonychia, as biological model systems for the analysis of programmed DNA-reorganization processes during nuclear differentiation. These include DNA excision, DNA elimination, reordering of gene segments and specific gene amplification. We show that small nuclear RNAs specify DNA sequences to be excised or retained, but also discuss the need for a RNA template molecule derived from the parental nucleus for these processes. This RNA template guides reordering of gene segments to become functional genes and determines gene copy number in the differentiated nucleus. Since the template is derived from the parental macronucleus, gene reordering and DNA amplification are inherited in a non-Mendelian epigenetic manner.
Resumo:
Amino acid transporters are crucial for parasite survival since the cellular metabolism of parasitic protozoa depends on the uptake of exogenous amino acids. Amino acid transporters are also of high pharmacological relevance because they may mediate uptake of toxic amino acid analogues. In the present study we show that the eflornithine transporter AAT6 from Trypanosoma brucei (TbAAT6) mediates growth on neutral amino acids when expressed in Saccharomyces cerevisiae mutants. The transport was electrogenic and further analysed in Xenopus laevis oocytes. Neutral amino acids, proline analogues, eflornithine and acivicin induced inward currents. For proline, glycine and tryptophan the apparent affinities and maximal transport rates increased with more negative membrane potentials. Proline-induced currents were dependent on pH, but not on sodium. Although proline represents the primary energy source of T. brucei in the tsetse fly, down-regulation of TbAAT6-expression by RNAi showed that in culture TbAAT6 is not essential for growth of procyclic form trypanosomes in the presence of glucose or proline as energy source. TbAAT6-RNAi lines of both bloodstream and procyclic form trypanosomes showed reduced susceptibility to eflornithine, whereas the sensitivity to acivicin remained unchanged, indicating that acivicin enters the cell by more than one transporter
Resumo:
Scuticociliatosis is an economically important, frequently fatal disease of marine fish in aquaculture, caused by histophagous ciliated protozoa in the subclass Scuticociliatida of the phylum Ciliophora. A rapidly lethal systemic scuticociliate infection is described that affected aquarium-captive zebra sharks (Stegostoma fasciatum), Port Jackson sharks (Heterodontus portusjacksoni), and a Japanese horn shark (Heterodontus japonicus). Animals died unexpectedly or after a brief period of lethargy or behavioral abnormality. Gross findings included necrohemorrhagic hepatitis and increased volumes of celomic fluid. Histologically, 1 or more of a triad of necrotizing hepatitis, necrotizing meningoencephalitis, and thrombosing branchitis were seen in all cases, with necrotizing vasculitis or intravascular fibrinocellular thrombi. Lesions contained variably abundant invading ciliated protozoa. Molecular identification by polymerase chain reaction from formalin-fixed tissues identified these as the scuticociliate Philasterides dicentrarchi (syn. Miamiensis avidus), a novel and potentially emergent pathogen in sharks.
Resumo:
Plasmodium and Theileria parasites are obligate intracellular protozoa of the phylum Apicomplexa. Theileria infection of bovine leukocytes induces transformation of host cells and infected leukocytes can be kept indefinitely in culture. Theileria-dependent host cell transformation has been the subject of interest for many years and the molecular basis of this unique phenomenon is quite well understood. The equivalent life cycle stage of Plasmodium is the infection of mammalian hepatocytes, where parasites reside for 2-7 days depending on the species. Some of the molecular details of parasite-host interactions in P. berghei-infected hepatocytes have emerged only very recently. Similar to what has been shown for Theileria-infected leukocytes these data suggest that malaria parasites within hepatocytes also protect their host cell from programmed cell death. However, the strategies employed to inhibit host cell apoptotic pathways appear to be different to those used by Theileria. This review discusses similarities and differences at the molecular level of Plasmodium- and Theileria-induced regulation of the host cell survival machinery.