38 resultados para Promoter region


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pathway of copper entry into Escherichia coli is still unknown. In an attempt to shed light on this process, a lux-based biosensor was utilized to monitor intracellular copper levels in situ. From a transposon-mutagenized library, strains were selected in which copper entry into cells was reduced, apparent as clones with reduced luminescence when grown in the presence of copper (low-glowers). One low-glower had a transposon insertion in the comR gene, which encodes a TetR-like transcriptional regulator. The mutant strain could be complemented by the comR gene on a plasmid, restoring luminescence to wild-type levels. ComR did not regulate its own expression, but was required for copper-induction of the neighboring, divergently transcribed comC gene, as shown by real-time quantitative PCR and with a promoter-lux fusion. The purified ComR regulator bound to the promoter region of the comC gene in vitro and was released by copper. By membrane fractionation, ComC was shown to be localized in the outer membrane. When grown in the presence of copper, ∆comC cells had higher periplasmic and cytoplasmic copper levels, compared to the wild-type, as assessed by the activation of the periplasmic CusRS sensor and the cytoplasmic CueR sensor, respectively. Thus, ComC is an outer membrane protein which lowers the permeability of the outer membrane to copper. The expression of ComC is controlled by ComR, a novel, TetR-like copper-responsive repressor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aggregatibacter actinomycetemcomitans strains of serotype b and with a deletion of 530 bp in the promoter region of the leukotoxin gene (JP2 clone) are known to be associated with severe periodontitis. Our study was aimed to detect virulence genes of A. actinomycetemcomitans strains obtained from patients living in four German cities with different proportions of immigrants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction Angiogenic signals are a vital signal of placental integrity. Aldosterone has recently been shown to enhance placental growth factor (PlGF) expression in the peripheral vasculature [1] and to promote trophoblast growth [2]. The plgf gene possesses a functional mineralocorticoid receptor responsive element in the promoter region. Objectives Thus, we hypothesized that aldosterone adapts placental angiogenesis to trophoblast growth by secreting PlGF. Methods The human choriocarcinoma cell line BeWo and first and third trimester human primary trophoblasts cells were subjected to several syncytialization signals. Upon visual confirmation, the cultured cells were subjected to either control conditions, the known stimulator forskolin, and increasing amounts of aldosterone (10−9 to 10−6 M) with and without the competitive aldosterone receptor blocker spironolactone. After 6 and 24 h of incubation, RNA and protein were extracted. PlGF transcripts were quantified by Taqman PCR normalized to several housekeeping genes. Protein expression was quantified by ELISA. Results PlGF mRNA expression increased 3-fold with forskolin in BeWo cells. In this cell line, aldosterone could slightly stimulate PlGF production. In non-syncytialized primary human first trimester trophoblasts, aldosterone did not exert a specific effect. In contrast, the term primary human trophoblasts did respond with a 2.5-fold increase after incubation with aldosterone (10−7 M) in the presence of forskolin to allow forming a syncytial layer. PlGF protein was already slightly upregulated following 6 h of incubation with aldosterone. Conclusion We concluded that aldosterone does regulate PlGF expression in specified conditions during pregnancy. Inappropriately low aldosterone levels such as in preeclampsia might such not only compromise plasma volume and trophoblast growth but also placental vascularization and systemic PlGF availability. These observations merit further investigation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To date, investigations of genetic diversity and the origins of domestication in sheep have utilised autosomal microsatellites and variation in the mitochondrial genome. We present the first analysis of both domestic and wild sheep using genetic markers residing on the ovine Y chromosome. Analysis of a single nucleotide polymorphism (oY1) in the SRY promoter region revealed that allele A-oY1 was present in all wild bighorn sheep (Ovis canadensis), two subspecies of thinhorn sheep (Ovis dalli), European Mouflon (Ovis musimon) and the Barbary (Ammontragis lervia). A-oY1 also had the highest frequency (71.4%) within 458 domestic sheep drawn from 65 breeds sampled from Africa, Asia, Australia, the Caribbean, Europe, the Middle East and Central Asia. Sequence analysis of a second locus, microsatellite SRYM18, revealed a compound repeat array displaying fixed differences, which identified bighorn and thinhorn sheep as distinct from the European Mouflon and domestic animals. Combined genotypic data identified 11 male-specific haplotypes that represented at least two separate lineages. Investigation of the geographical distribution of each haplotype revealed that one (H6) was both very common and widespread in the global sample of domestic breeds. The remaining haplotypes each displayed more restricted and informative distributions. For example, H5 was likely founded following the domestication of European breeds and was used to trace the recent transportation of animals to both the Caribbean and Australia. A high rate of Y chromosomal dispersal appears to have taken place during the development of domestic sheep as only 12.9% of the total observed variation was partitioned between major geographical regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glomerular mesangial cells can produce high amounts of nitric oxide (NO) and reactive oxygen species (ROS). Here we analyzed the impact of NO on the ROS-generating system, particularly on the NADPH oxidase Nox1. Nox1 mRNA and protein levels were markedly decreased by treatment of mesangial cells with the NO-releasing compound DETA-NO in a concentration- and time-dependent fashion. By altering the cGMP signaling system with different inhibitors or activators, we revealed that the effect of NO on Nox1 expression is at least in part mediated by cGMP. Analysis of a reporter construct comprising the 2547 bp of the nox1 promoter region revealed that a stimulatory effect of IL-1beta on nox1 transcription is counteracted by an inhibitory effect of IL-1beta-evoked endogenous NO formation. Moreover, pretreatment of mesangial cells with DETA-NO attenuated platelet-derived growth factor (PDGF)-BB or serum stimulated production of superoxide as assessed by real-time EPR spectroscopy and dichlorofluorescein formation. Transfection of mesangial cells with siRNAs directed against Nox1 and Nox4 revealed that inhibition of Nox1, but not Nox4 expression, is responsible for the reduced ROS formation by NO. Obviously, there exists a fine-tuned crosstalk between NO and ROS generating systems in the course of inflammatory diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutations in the FBN1 gene are the major cause of Marfan syndrome (MFS), an autosomal dominant connective tissue disorder, which displays variable manifestations in the cardiovascular, ocular, and skeletal systems. Current molecular genetic testing of FBN1 may miss mutations in the promoter region or in other noncoding sequences as well as partial or complete gene deletions and duplications. In this study, we tested for copy number variations by successively applying multiplex ligation-dependent probe amplification (MLPA) and the Affymetrix Human Mapping 500 K Array Set, which contains probes for approximately 500,000 single-nucleotide polymorphisms (SNPs) across the genome. By analyzing genomic DNA of 101 unrelated individuals with MFS or related phenotypes in whom standard genetic testing detected no mutation, we identified FBN1 deletions in two patients with MFS. Our high-resolution approach narrowed down the deletion breakpoints. Subsequent sequencing of the junctional fragments revealed the deletion sizes of 26,887 and 302,580 bp, respectively. Surprisingly, both deletions affect the putative regulatory and promoter region of the FBN1 gene, strongly indicating that they abolish transcription of the deleted allele. This expectation of complete loss of function of one allele, i.e. true haploinsufficiency, was confirmed by transcript analyses. Our findings not only emphasize the importance of screening for large genomic rearrangements in comprehensive genetic testing of FBN1 but, importantly, also extend the molecular etiology of MFS by providing hitherto unreported evidence that true haploinsufficiency is sufficient to cause MFS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HLA-G is a non-classical MHC class Ib molecule predominantly expressed in cytotrophoblasts and under pathological conditions also in chronically inflamed and in malignant tissues. Recently an increased expression of HLA-G was found in ulcerative colitis (UC), but not in Crohn's disease (CD). The HLA-G gene is located in IBD3, a linkage region for inflammatory bowel disease (IBD). A 14-bp deletion polymorphism (Del+/Del-) within exon 8 of the HLA-G gene might influence transcription activity and is therefore of potential functional relevance. To investigate whether the 14-bp deletion polymorphism is associated with IBD, 371 patients with CD, 257 patients with UC and 739 controls were genotyped. The heterozygous genotype (P = 0.031) and the Del+ phenotype (P = 0.038) were significantly increased, whereas the homozygous Del- phenotype (P = 0.038) was significantly decreased in UC when compared with CD. Thus, the 14-bp deletion polymorphism within the HLA-G gene displayed significant differences between UC and CD. Moreover, a significant increase of the Del+ allele (P = 0.002) and the Del+/Del+ genotype (P = 0.013) and a consecutive decrease of the Del-/- genotype (P = 0.024) were observed in those CD cases positive for ileocecal resection. Thus, a potential effect of the HLA-G gene in IBD may affect both UC and CD. Other polymorphisms linked to the 14-bp deletion polymorphism might also contribute to immunopathogenesis. As there are several partly functional polymorphisms within the promoter region potentially influencing HLA-G expression, further studies in IBD are necessary in the context of differential expression of HLA-G between UC and CD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To identify components of the copper homeostatic mechanism of Lactococcus lactis, we employed two-dimensional gel electrophoresis to detect changes in the proteome in response to copper. Three proteins upregulated by copper were identified: glyoxylase I (YaiA), a nitroreductase (YtjD), and lactate oxidase (LctO). The promoter regions of these genes feature cop boxes of consensus TACAnnTGTA, which are the binding site of CopY-type copper-responsive repressors. A genome-wide search for cop boxes revealed 28 such sequence motifs. They were tested by electrophoretic mobility shift assays for the interaction with purified CopR, the CopY-type repressor of L. lactis. Seven of the cop boxes interacted with CopR in a copper-sensitive manner. They were present in the promoter region of five genes, lctO, ytjD, copB, ydiD, and yahC; and two polycistronic operons, yahCD-yaiAB and copRZA. Induction of these genes by copper was confirmed by real-time quantitative PCR. The copRZA operon encodes the CopR repressor of the regulon; a copper chaperone, CopZ; and a putative copper ATPase, CopA. When expressed in Escherichia coli, the copRZA operon conferred copper resistance, suggesting that it functions in copper export from the cytoplasm. Other member genes of the CopR regulon may similarly be involved in copper metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes the conversion of inactive to active glucocorticoids. 11beta-HSD1 plays a crucial role in the pathogenesis of obesity and controls glucocorticoid actions in inflammation. Several studies have demonstrated that TNF-alpha increases 11beta-HSD1 mRNA and activity in various cell models. Here, we demonstrate that mRNA and activity of 11beta-HSD1 is increased in liver tissue from transgenic mice overexpressing TNF-alpha, indicating that this effect also occurs in vivo. To dissect the molecular mechanism of this increase, we investigated basal and TNF-alpha-induced transcription of the 11beta-HSD1 gene (HSD11B1) in HepG2 cells. We found that TNF-alpha acts via p38 MAPK pathway. Transient transfections with variable lengths of human HSD11B1 promoter revealed highest activity with or without TNF-alpha in the proximal promoter region (-180 to +74). Cotransfection with human CCAAT/enhancer binding protein-alpha (C/EBPalpha) and C/EBPbeta-LAP expression vectors activated the HSD11B1 promoter with the strongest effect within the same region. Gel shift and RNA interference assays revealed the involvement of mainly C/EBPalpha, but also C/EBPbeta, in basal and only of C/EBPbeta in the TNF-alpha-induced HSD11B1 expression. Chromatin immunoprecipitation assay confirmed in vivo the increased abundance of C/EBPbeta on the proximal HSD11B1 promoter upon TNF-alpha treatment. In conclusion, C/EBPalpha and C/EBPbeta control basal transcription, and TNF-alpha upregulates 11beta-HSD1, most likely by p38 MAPK-mediated increased binding of C/EBPbeta to the human HSD11B1 promoter. To our knowledge, this is the first study showing involvement of p38 MAPK in the TNF-alpha-mediated 11beta-HSD1 regulation, and that TNF-alpha stimulates enzyme activity in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Hypermethylated in Cancer 1 (HIC1) gene encodes a zinc finger transcriptional repressor that cooperates with p53 to suppress cancer development. We and others recently showed that HIC1 is a transcriptional target of p53. To identify additional transcriptional regulators of HIC1, we screened a set of transcription factors for regulation of a human HIC1 promoter reporter. We found that E2F1 strongly activates the full-length HIC1 promoter reporter. Promoter deletions and mutations identified two E2F responsive elements in the HIC1 core promoter region. Moreover, in vivo binding of E2F1 to the HIC1 promoter was shown by chromatin immunoprecipitation assays in human TIG3 fibroblasts expressing tamoxifen-activated E2F1. In agreement, activation of E2F1 in TIG3-E2F1 cells markedly increased HIC1 expression. Interestingly, expression of E2F1 in the p53(-/-) hepatocellular carcinoma cell line Hep3B led to an increase of endogenous HIC1 mRNA, although bisulfite genomic sequencing of the HIC1 promoter revealed that the region bearing the two E2F1 binding sites is hypermethylated. In addition, endogenous E2F1 induced by etoposide treatment bound to the HIC1 promoter. Moreover, inhibition of E2F1 strongly reduced the expression of etoposide-induced HIC1. In conclusion, we identified HIC1 as novel E2F1 transcriptional target in DNA damage responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Macrophage migration inhibitory factor (MIF) plays an important regulatory role in sepsis. In the promoter region a C/G single nucleotide polymorphism (SNP) at position -173 (rs755622) and a CATT5-8 microsatellite at position -794 are related to modified promoter activity. The purpose of the study was to analyze their association with the incidence and outcome of severe sepsis. METHODS: Genotype distributions and allele frequencies in 169 patients with severe sepsis, 94 healthy blood donors and 183 postoperative patients without signs of infection or inflammation were analyzed by real time PCR and Sequence analysis. All included individuals were Caucasians. RESULTS: Genotype distribution and allele frequencies of severe sepsis patients were comparable to both control groups. However, the genotype and allele frequencies of both polymorphisms were associated significantly with the outcome of severe sepsis. The highest risk of dying from severe sepsis was detectable in patients carrying a haplotype with the alleles -173 C and CATT7 (p = 0.0005, fisher exact test, RR = 1,806, CI: 1.337 to 2.439). CONCLUSION: The haplotype with the combination of the -173 C allele and the -794 CATT7 allele may not serve as a marker for susceptibility to sepsis, but may help identify septic patients at risk of dying.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The BCL6 proto-oncogene encodes a transcriptional repressor that is required for germinal center (GC) formation and whose deregulation by genomic lesions is implicated in the pathogenesis of GC-derived diffuse large B cell lymphoma (DLBCL) and, less frequently, follicular lymphoma (FL). The biological function of BCL6 is only partially understood because no more than a few genes have been functionally characterized as direct targets of BCL6 transrepression activity. Here we report that the anti-apoptotic proto-oncogene BCL2 is a direct target of BCL6 in GC B cells. BCL6 binds to the BCL2 promoter region by interacting with the transcriptional activator Miz1 and suppresses Miz1-induced activation of BCL2 expression. BCL6-mediated suppression of BCL2 is lost in FL and DLBCL, where the 2 proteins are pathologically coexpressed, because of BCL2 chromosomal translocations and other mechanisms, including Miz1 deregulation and somatic mutations in the BCL2 promoter region. These results identify an important function for BCL6 in facilitating apoptosis of GC B cells via suppression of BCL2, and suggest that blocking this pathway is critical for lymphomagenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A small subset of familial pancreatic endocrine tumors (PET) arises in patients with von Hippel-Lindau syndrome and these tumors may have an adverse outcome compared to other familial PET. Sporadic PET rarely harbors somatic VHL mutations, but the chromosomal location of the VHL gene is frequently deleted in sporadic PET. A subset of sporadic PET shows active hypoxia signals on mRNA and protein level. To identify the frequency of functionally relevant VHL inactivation in sporadic PET and to examine a possible prognostic significance we correlated epigenetic and genetic VHL alterations with hypoxia signals. VHL mutations were absent in all 37 PETs examined. In 2 out of 35 informative PET (6%) methylation of the VHL promoter region was detected and VHL deletion by fluorescence in situ hybridization was found in 14 out of 79 PET (18%). Hypoxia inducible factor 1alpha (HIF1-alpha), carbonic anhydrase 9 (CA-9), and glucose transporter 1 (GLUT-1) protein was expressed in 19, 27, and 30% of the 152 PETs examined. Protein expression of the HIF1-alpha downstream target CA-9 correlated significantly with the expression of CA-9 RNA (P<0.001), VHL RNA (P<0.05), and VHL deletion (P<0.001) as well as with HIF1-alpha (P<0.005) and GLUT-1 immunohistochemistry (P<0.001). These PET with VHL alterations and signs of hypoxia signalling were characterized by a significantly shortened disease-free survival. We conclude that VHL gene impairment by promoter methylation and VHL deletion in nearly 25% of PET leads to the activation of the HIF-pathway. Our data suggest that VHL inactivation and consecutive hypoxia signals may be a mechanism for the development of sporadic PET with an adverse outcome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES Resistance to extended-spectrum cephalosporins (ESCs) in Escherichia coli can be due to the production of ESBLs, plasmid-mediated AmpCs (pAmpCs) or chromosomal AmpCs (cAmpCs). Information regarding type and prevalence of β-lactamases, clonal relations and plasmids associated with the bla genes for ESC-R E. coli (ESC-R-Ec) detected in Switzerland is lacking. Moreover, data focusing on patients referred to the specialized outpatient clinics (SOCs) are needed. METHODS We analysed 611 unique E. coli isolated during September-December 2011. ESC-R-Ec were studied with microarrays, PCR/DNA sequencing for blaESBLs, blapAmpCs, promoter region of blacAmpC, IS elements, plasmid incompatibility group, and also implementing transformation, aIEF, rep-PCR and MLST. RESULTS The highest resistance rates were observed in the SOCs, whereas those in the hospital and community were lower (e.g. quinolone resistance of 22.6%, 17.2% and 9.0%, respectively; P = 0.003 for SOCs versus community). The prevalence of ESC-R-Ec in the three settings was 5.3% (n = 11), 7.8% (n = 22) and 5.7% (n = 7), respectively. Thirty isolates produced CTX-M ESBLs (14 were CTX-M-15), 5 produced CMY-2 pAmpC and 5 hyper-expressed cAmpCs due to promoter mutations. Fourteen isolates were of sequence type 131 (ST131; 10 with CTX-M-15). blaCTX-M and blaCMY-2 were associated with an intact or truncated ISEcp1 and were mainly carried by IncF, IncFII and IncI1plasmids. CONCLUSIONS ST131 producing CTX-M-15 is the predominant clone. The prevalence of ESC-R-Ec (overall 6.5%) is low, but an unusual relatively high frequency of AmpC producers (25%) was noted. The presence of ESC-R-Ec in the SOCs and their potential ability to be exchanged between hospital and community should be taken into serious consideration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have analyzed the chromatin structure of the porcine tumor necrosis factor gene locus (TNF-alpha and TNF-beta). Nuclei from porcine peripheral blood mononuclear cells were digested with different nucleases. As assessed with micrococcal nuclease, the two TNF genes displayed slightly faster digestion kinetics than bulk DNA. Studies with DNaseI revealed distinct DNaseI hypersensitive sites (DH-sites) within the porcine TNF locus. Four DH-sites could be observed in the promoter and mRNA leader regions of the TNF-beta gene. Two DH-sites could be observed for the TNF-alpha gene, one located in the promoter region close to the TATA-box and the other site in intron 3. This pattern of DH-sites was present independently of the activation state of the cells. Interestingly in a porcine macrophage-like cell line, we found that the TNF-alpha promoter DH-site disappeared and another DH-site appeared in the region of intron 1. Additionally, the DH-site of intron 3 could be enhanced by PMA-stimulation in these cells. TNF-beta sites were not detected in this cell line. However, DH-sites were totally absent in fibroblasts (freshly isolated from testicles) and in porcine kidney cells (PK15 cell line) both of which do not transcribe the TNF genes. Therefore, the pattern of DH-sites corresponds to the transcriptional activity of analyzed cells.