55 resultados para Procedural Programming
Resumo:
High altitude constitutes an exciting natural laboratory for medical research. While initially, the aim of high-altitude research was to understand the adaptation of the organism to hypoxia and find treatments for altitude-related diseases, over the past decade or so, the scope of this research has broadened considerably. Two important observations led to the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema (HAPE) represents a unique model which allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Secondly, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.
Resumo:
To assess the differential implications of cardiac biomarker type on peri-procedural myocardial infarction (PMI) reporting.
Resumo:
BACKGROUND: Neonates in a neonatal intensive care unit are exposed to a high number of painful procedures. Since repeated and sustained pain can have consequences for the neurological and behaviour-oriented development of the newborn, the greatest attention needs to be paid to systematic pain management in neonatology. Non-pharmacological treatment methods are being increasingly discussed with regard to pain prevention and relief either alone or in combination with pharmacological treatment. AIMS: To identify effective non-pharmacological interventions with regard to procedural pain in neonates. METHODS: A literature search was conducted via the MedLine, CINAHL, Cochrane Library databases and complemented by a handsearch. The literature search covered the period from 1984 to 2004. Data were extracted according to pre-defined criteria by two independent reviewers and methodological quality was assessed. RESULTS: 13 randomised controlled studies and two meta-analyses were taken into consideration with regard to the question of current nursing practice of non-pharmacological pain management methods. The selected interventions were "non-nutritive sucking", "music", "swaddling", "positioning", "olfactory and multisensorial stimulation", "kangaroo care" and "maternal touch". There is evidence that the methods of "non-nutritive sucking", "swaddling" and "facilitated tucking" do have a pain-alleviating effect on neonates. CONCLUSIONS: Some of the non-pharmacological interventions have an evident favourable effect on pulse rate, respiration and oxygen saturation, on the reduction of motor activity, and on the excitation states after invasive measures. However, unambiguous evidence of this still remains to be presented. Further research should emphasise the use of validated pain assessment instruments for the evaluation of the pain-alleviating effect of non-pharmacological interventions.
Resumo:
BACKGROUND: Percutaneous closure of patent foramen ovale (PFO) is generally performed using intra-procedural guidance by transoesophageal (TEE) or intracardiac (ICE) echocardiography. While TEE requires sedation or general anaesthesia, ICE is costly and adds incremental risk, and both imaging modalities lengthen the procedure. METHODS: A total of 825 consecutive patients (age 51 +/- 13 years; 58% male) underwent percutaneous PFO closure solely under fluoroscopic guidance, without intra-procedural echocardiography. The indications for PFO closure were presumed paradoxical embolism in 698 patients (95% cerebral, 5% other locations), an embolic event with concurrent aetiologies in 47, diving in 51, migraine headaches in 13, and other reasons in 16. An atrial septal aneurysm was associated with the PFO in 242 patients (29%). RESULTS: Permanent device implantation failed in two patients (0.2%). There were 18 procedural complications (2.2%), including embolization of the device or parts of it in five patients with successful percutaneous removal in all cases, air embolism with transient symptoms in four patients, pericardial tamponade requiring pericardiocentesis in one patient, a transient ischaemic attack with visual symptoms in one patient, and vascular access site problems in seven patients. There were no long-term sequelae. Contrast TEE at six months showed complete abolition of right-to-left shunt via PFO in 88% of patients, whereas a minimal, moderate or large residual shunt persisted in 7%, 3%, and 2%, respectively. CONCLUSIONS: This study confirms the safety and feasibility of percutaneous PFO closure without intra-procedural echocardiographic guidance in a large cohort of consecutive patients.
Resumo:
AIMS: To describe the procedural performance and 30-day outcomes following implantation using the 18 Fr CoreValve Revalving System (CRS) as part of the multicentre, expanded evaluation registry, 1-year after obtaining CE mark approval. METHODS AND RESULTS: Patients with symptomatic severe aortic stenosis and logistic Euroscore > or =15%, or age > or =75 years, or age > or =65 years associated with pre-defined risk factors, and for whom a physician proctor and a clinical specialist were in attendance during the implantation and who collected the clinical data, were included. From April 2007, to April 2008, 646 patients with a mean age of 81 +/- 6.6 years, mean aortic valve area 0.6 +/- 0.2 cm2, and logistic EuroSCORE of 23.1 +/- 13.8% were recruited. After valve implantation, the mean transaortic valve gradient decreased from 49.4 +/- 13.9 to 3 +/- 2 mmHg. All patients had paravalvular aortic regurgitation < or = grade 2. The rate of procedural success was 97%. The procedural mortality rate was 1.5%. At 30 days, the all-cause mortality rate (i.e, including procedural) was 8% and the combined rate of death, stroke and myocardial infarction was 9.3%. CONCLUSIONS: The results of this study demonstrate the high rate of procedural success and a low 30-day mortality in a large cohort of high-risk patients undergoing transcatheter aortic valve implantation (TAVI) with the CRS.
Resumo:
OBJECTIVES: Ventilated preterm infants are at high risk for procedural pain exposure. In Switzerland there is a lack of knowledge about the pain management in this highly vulnerable patient population. The aims of this study were to describe the type and frequency of procedures and to determine the amount of analgesia given to this patient group in two Swiss neonatal intensive care units. METHOD: A retrospective cohort study was performed examining procedural exposure and pain management of a convenience sample of 120 ventilated preterm infants (mean age = 29.7 weeks of gestation) during the first 14 days of life after delivery and born between May 1st 2004 and March 31st 2006. RESULTS: The total number of procedures all the infants underwent was 38,626 indicating a mean of 22.9 general procedures performed per child and day. Overall, 75.6% of these procedures are considered to be painful. The most frequently performed procedure is manipulation on the CPAP prongs. Pain measurements were performed four to seven times per day. In all, 99.2% of the infants received either non-pharmacological and/or pharmacological agents and 70.8% received orally administered glucose as pre-emptive analgesia. Morphine was the most commonly used pharmacological agent. DISCUSSION: The number of procedures ventilated preterm infants are exposed to is disconcerting. Iatrogenic pain is a serious problem, particularly in preterm infants of low gestational age. The fact that nurses assessed pain on average four to seven times daily per infant indicates a commitment to exploring a painful state in a highly vulnerable patient population. In general, pharmacological pain management and the administration of oral glucose as a non-pharmacological pain relieving intervention appear to be adequate, but there may be deficiencies, particularly for extremely low birth weight infants born <28 weeks of gestation.
Resumo:
Context-dependent behavior is becoming increasingly important for a wide range of application domains, from pervasive computing to common business applications. Unfortunately, mainstream programming languages do not provide mechanisms that enable software entities to adapt their behavior dynamically to the current execution context. This leads developers to adopt convoluted designs to achieve the necessary runtime flexibility. We propose a new programming technique called Context-oriented Programming (COP) which addresses this problem. COP treats context explicitly, and provides mechanisms to dynamically adapt behavior in reaction to changes in context, even after system deployment at runtime. In this paper we lay the foundations of COP, show how dynamic layer activation enables multi-dimensional dispatch, illustrate the application of COP by examples in several language extensions, and demonstrate that COP is largely independent of other commitments to programming style.
Resumo:
Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta. Oxygen species are known to induce epigenetic alterations and may cross the placental barrier. We hypothesized that RDP in mice induces pulmonary vascular dysfunction in the offspring that is related to an epigenetic mechanism. To test this hypothesis, we assessed pulmonary vascular function and lung DNA methylation in offspring of RDP and in control mice at the end of a 2-wk exposure to hypoxia. We found that endothelium-dependent pulmonary artery vasodilation in vitro was impaired and hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in vivo were exaggerated in offspring of RDP. This pulmonary vascular dysfunction was associated with altered lung DNA methylation. Administration of the histone deacetylase inhibitors butyrate and trichostatin A to offspring of RDP normalized pulmonary DNA methylation and vascular function. Finally, administration of the nitroxide Tempol to the mother during RDP prevented vascular dysfunction and dysmethylation in the offspring. These findings demonstrate that in mice undernutrition during gestation induces pulmonary vascular dysfunction in the offspring by an epigenetic mechanism. A similar mechanism may be involved in the fetal programming of vascular dysfunction in humans.