23 resultados para Probability Distribution Function


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the problem of nonparametric estimation of a concave regression function F. We show that the supremum distance between the least square s estimatorand F on a compact interval is typically of order(log(n)/n)2/5. This entails rates of convergence for the estimator’s derivative. Moreover, we discuss the impact of additional constraints on F such as monotonicity and pointwise bounds. Then we apply these results to the analysis of current status data, where the distribution function of the event times is assumed to be concave.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Io's plasma and neutral tori play significant roles in the Jovian magnetosphere. We present feasibility studies of measuring low-energy energetic neutral atoms (LENAs) generated from the Io tori. We calculate the LENA flux between 10 eV and 3 keV. The energy range includes the corotational plasma flow energy. The expected differential flux at Ganymede distance is typically 10(3)-10(5) cm(-2) s(-1) sr(-1) eV(-1) near the energy of the corotation. It is above the detection level of the planned LENA sensor that is to be flown to the Jupiter system with integration times of 0.01-1 s. The flux has strong asymmetry with respective to the Io phase. The observations will exhibit periodicities, which can be attributed to the Jovian magnetosphere rotation and the rotation of Io around Jupiter. The energy spectra will exhibit dispersion signatures, because of the non-negligible flight time of the LENAs from Io to the satellite. In 2030, the Jupiter exploration mission JUICE will conduct a LENA measurement with a LENA instrument, the Jovian Neutrals Analyzer (JNA). From the LENA observations collected by JNA, we will be able to derive characteristic quantities, such as the density, velocity, velocity distribution function, and composition of plasma-torus particles. We also discuss the possible physics to be explored by JNA in addition to the constraints for operating the sensor and analyzing the obtained dataset. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neutral interstellar helium has been observed by the Interstellar Boundary Explorer (IBEX) since 2009, with a signal-to-noise ratio well above 1000. Because of the geometry of the observations, the signal observed from January to March each year is the easiest to identify. However, as we show via simulations, the portion of the signal in the range of intensities from 10(-3) to 10(-2) of the peak value, previously mostly left out from the analysis, may provide important information about the details of the distribution function of interstellar He gas in front of the heliosphere. In particular, these observations may inform us about possible departures of the parent interstellar He population from equilibrium. We compare the expected distribution of the signal for the canonical assumption of a single Maxwell-Boltzmann population with the distributions for a superposition of the Maxwell-Boltzmann primary population and the recently discovered Warm Breeze, and for a single primary population given by a kappa function. We identify the regions on the sky where the differences between those cases are expected to be the most visible against the background. We discuss the diagnostic potential of the fall peak of the interstellar signal, reduced by a factor of 50 due to the Compton-Getting effect but still above the detection limit of IBEX. We point out the strong energy dependence of the fall signal and suggest that searching for this signal in the data could bring an independent assessment of the low-energy measurement threshold of the IBEX-Lo sensor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Context. The ESA Rosetta spacecraft, currently orbiting around cornet 67P/Churyumov-Gerasimenko, has already provided in situ measurements of the dust grain properties from several instruments, particularly OSIRIS and GIADA. We propose adding value to those measurements by combining them with ground-based observations of the dust tail to monitor the overall, time-dependent dust-production rate and size distribution. Aims. To constrain the dust grain properties, we take Rosetta OSIRIS and GIADA results into account, and combine OSIRIS data during the approach phase (from late April to early June 2014) with a large data set of ground-based images that were acquired with the ESO Very Large Telescope (VLT) from February to November 2014. Methods. A Monte Carlo dust tail code, which has already been used to characterise the dust environments of several comets and active asteroids, has been applied to retrieve the dust parameters. Key properties of the grains (density, velocity, and size distribution) were obtained from. Rosetta observations: these parameters were used as input of the code to considerably reduce the number of free parameters. In this way, the overall dust mass-loss rate and its dependence on the heliocentric distance could be obtained accurately. Results. The dust parameters derived from the inner coma measurements by OSIRIS and GIADA and from distant imaging using VLT data are consistent, except for the power index of the size-distribution function, which is alpha = -3, instead of alpha = -2, for grains smaller than 1 mm. This is possibly linked to the presence of fluffy aggregates in the coma. The onset of cometary activity occurs at approximately 4.3 AU, with a dust production rate of 0.5 kg/s, increasing up to 15 kg/s at 2.9 AU. This implies a dust-to-gas mass ratio varying between 3.8 and 6.5 for the best-fit model when combined with water-production rates from the MIRO experiment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This package includes various Mata functions. kern(): various kernel functions; kint(): kernel integral functions; kdel0(): canonical bandwidth of kernel; quantile(): quantile function; median(): median; iqrange(): inter-quartile range; ecdf(): cumulative distribution function; relrank(): grade transformation; ranks(): ranks/cumulative frequencies; freq(): compute frequency counts; histogram(): produce histogram data; mgof(): multinomial goodness-of-fit tests; collapse(): summary statistics by subgroups; _collapse(): summary statistics by subgroups; gini(): Gini coefficient; sample(): draw random sample; srswr(): SRS with replacement; srswor(): SRS without replacement; upswr(): UPS with replacement; upswor(): UPS without replacement; bs(): bootstrap estimation; bs2(): bootstrap estimation; bs_report(): report bootstrap results; jk(): jackknife estimation; jk_report(): report jackknife results; subset(): obtain subsets, one at a time; composition(): obtain compositions, one by one; ncompositions(): determine number of compositions; partition(): obtain partitions, one at a time; npartitionss(): determine number of partitions; rsubset(): draw random subset; rcomposition(): draw random composition; colvar(): variance, by column; meancolvar(): mean and variance, by column; variance0(): population variance; meanvariance0(): mean and population variance; mse(): mean squared error; colmse(): mean squared error, by column; sse(): sum of squared errors; colsse(): sum of squared errors, by column; benford(): Benford distribution; cauchy(): cumulative Cauchy-Lorentz dist.; cauchyden(): Cauchy-Lorentz density; cauchytail(): reverse cumulative Cauchy-Lorentz; invcauchy(): inverse cumulative Cauchy-Lorentz; rbinomial(): generate binomial random numbers; cebinomial(): cond. expect. of binomial r.v.; root(): Brent's univariate zero finder; nrroot(): Newton-Raphson zero finder; finvert(): univariate function inverter; integrate_sr(): univariate function integration (Simpson's rule); integrate_38(): univariate function integration (Simpson's 3/8 rule); ipolate(): linear interpolation; polint(): polynomial inter-/extrapolation; plot(): Draw twoway plot; _plot(): Draw twoway plot; panels(): identify nested panel structure; _panels(): identify panel sizes; npanels(): identify number of panels; nunique(): count number of distinct values; nuniqrows(): count number of unique rows; isconstant(): whether matrix is constant; nobs(): number of observations; colrunsum(): running sum of each column; linbin(): linear binning; fastlinbin(): fast linear binning; exactbin(): exact binning; makegrid(): equally spaced grid points; cut(): categorize data vector; posof(): find element in vector; which(): positions of nonzero elements; locate(): search an ordered vector; hunt(): consecutive search; cond(): matrix conditional operator; expand(): duplicate single rows/columns; _expand(): duplicate rows/columns in place; repeat(): duplicate contents as a whole; _repeat(): duplicate contents in place; unorder2(): stable version of unorder(); jumble2(): stable version of jumble(); _jumble2(): stable version of _jumble(); pieces(): break string into pieces; npieces(): count number of pieces; _npieces(): count number of pieces; invtokens(): reverse of tokens(); realofstr(): convert string into real; strexpand(): expand string argument; matlist(): display a (real) matrix; insheet(): read spreadsheet file; infile(): read free-format file; outsheet(): write spreadsheet file; callf(): pass optional args to function; callf_setup(): setup for mm_callf().

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High ³⁷Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of ³⁷Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict ³⁷Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating ³⁷Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for ³⁷Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural ³⁷Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of ³⁷Ar activity concentrations. The influence of soil water content on ³⁷Ar production is shown to be negligible to first order, while ³⁷Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cardiogoniometry (CGM), a spatiotemporal electrocardiologic 5-lead method with automated analysis, may be useful in primary healthcare for detecting coronary artery disease (CAD) at rest. Our aim was to systematically develop a stenosis-specific parameter set for global CAD detection. In 793 consecutively admitted patients with presumed non-acute CAD, CGM data were collected prior to elective coronary angiography and analyzed retrospectively. 658 patients fulfilled the inclusion criteria, 405 had CAD verified by coronary angiography; the 253 patients with normal coronary angiograms served as the non-CAD controls. Study patients--matched for age, BMI, and gender--were angiographically assigned to 8 stenosis-specific CAD categories or to the controls. One CGM parameter possessing significance (P < .05) and the best diagnostic accuracy was matched to one CAD category. The area under the ROC curve was .80 (global CAD versus controls). A set containing 8 stenosis-specific CGM parameters described variability of R vectors and R-T angles, spatial position and potential distribution of R/T vectors, and ST/T segment alterations. Our parameter set systematically combines CAD categories into an algorithm that detects CAD globally. Prospective validation in clinical studies is ongoing.