42 resultados para Prediction
Resumo:
Areal bone mineral density (aBMD) at the distal tibia, measured at the epiphysis (T-EPI) and diaphysis (T-DIA), is predictive for fracture risk. Structural bone parameters evaluated at the distal tibia by high resolution peripheral quantitative computed tomography (HR-pQCT) displayed differences between healthy and fracture patients. With its simple geometry, T-DIA may allow investigating the correlation between bone structural parameter and bone strength.
Resumo:
Background The loose and stringent Asthma Predictive Indices (API), developed in Tucson, are popular rules to predict asthma in preschool children. To be clinically useful, they require validation in different settings. Objective To assess the predictive performance of the API in an independent population and compare it with simpler rules based only on preschool wheeze. Methods We studied 1954 children of the population-based Leicester Respiratory Cohort, followed up from age 1 to 10 years. The API and frequency of wheeze were assessed at age 3 years, and we determined their association with asthma at ages 7 and 10 years by using logistic regression. We computed test characteristics and measures of predictive performance to validate the API and compare it with simpler rules. Results The ability of the API to predict asthma in Leicester was comparable to Tucson: for the loose API, odds ratios for asthma at age 7 years were 5.2 in Leicester (5.5 in Tucson), and positive predictive values were 26% (26%). For the stringent API, these values were 8.2 (9.8) and 40% (48%). For the simpler rule early wheeze, corresponding values were 5.4 and 21%; for early frequent wheeze, 6.7 and 36%. The discriminative ability of all prediction rules was moderate (c statistic ≤ 0.7) and overall predictive performance low (scaled Brier score < 20%). Conclusion Predictive performance of the API in Leicester, although comparable to the original study, was modest and similar to prediction based only on preschool wheeze. This highlights the need for better prediction rules.
Resumo:
The chemotherapeutic drug 5-fluorouracil (5-FU) is widely used for treating solid tumors. Response to 5-FU treatment is variable with 10-30% of patients experiencing serious toxicity partly explained by reduced activity of dihydropyrimidine dehydrogenase (DPD). DPD converts endogenous uracil (U) into 5,6-dihydrouracil (UH(2) ), and analogously, 5-FU into 5-fluoro-5,6-dihydrouracil (5-FUH(2) ). Combined quantification of U and UH(2) with 5-FU and 5-FUH(2) may provide a pre-therapeutic assessment of DPD activity and further guide drug dosing during therapy. Here, we report the development of a liquid chromatography-tandem mass spectrometry assay for simultaneous quantification of U, UH(2) , 5-FU and 5-FUH(2) in human plasma. Samples were prepared by liquid-liquid extraction with 10:1 ethyl acetate-2-propanol (v/v). The evaporated samples were reconstituted in 0.1% formic acid and 10 μL aliquots were injected into the HPLC system. Analyte separation was achieved on an Atlantis dC(18) column with a mobile phase consisting of 1.0 mm ammonium acetate, 0.5 mm formic acid and 3.3% methanol. Positively ionized analytes were detected by multiple reaction monitoring. The analytical response was linear in the range 0.01-10 μm for U, 0.1-10 μm for UH(2) , 0.1-75 μm for 5-FU and 0.75-75 μm for 5-FUH(2) , covering the expected concentration ranges in plasma. The method was validated following the FDA guidelines and applied to clinical samples obtained from ten 5-FU-treated colorectal cancer patients. The present method merges the analysis of 5-FU pharmacokinetics and DPD activity into a single assay representing a valuable tool to improve the efficacy and safety of 5-FU-based chemotherapy.
Resumo:
Prediction of glycemic profile is an important task for both early recognition of hypoglycemia and enhancement of the control algorithms for optimization of insulin infusion rate. Adaptive models for glucose prediction and recognition of hypoglycemia based on statistical and artificial intelligence techniques are presented.
Resumo:
The Outpatient Bleeding Risk Index (OBRI) and the Kuijer, RIETE and Kearon scores are clinical prognostic scores for bleeding in patients receiving oral anticoagulants for venous thromboembolism (VTE). We prospectively compared the performance of these scores in elderly patients with VTE.
Resumo:
Indoor radon is regularly measured in Switzerland. However, a nationwide model to predict residential radon levels has not been developed. The aim of this study was to develop a prediction model to assess indoor radon concentrations in Switzerland. The model was based on 44,631 measurements from the nationwide Swiss radon database collected between 1994 and 2004. Of these, 80% randomly selected measurements were used for model development and the remaining 20% for an independent model validation. A multivariable log-linear regression model was fitted and relevant predictors selected according to evidence from the literature, the adjusted R², the Akaike's information criterion (AIC), and the Bayesian information criterion (BIC). The prediction model was evaluated by calculating Spearman rank correlation between measured and predicted values. Additionally, the predicted values were categorised into three categories (50th, 50th-90th and 90th percentile) and compared with measured categories using a weighted Kappa statistic. The most relevant predictors for indoor radon levels were tectonic units and year of construction of the building, followed by soil texture, degree of urbanisation, floor of the building where the measurement was taken and housing type (P-values <0.001 for all). Mean predicted radon values (geometric mean) were 66 Bq/m³ (interquartile range 40-111 Bq/m³) in the lowest exposure category, 126 Bq/m³ (69-215 Bq/m³) in the medium category, and 219 Bq/m³ (108-427 Bq/m³) in the highest category. Spearman correlation between predictions and measurements was 0.45 (95%-CI: 0.44; 0.46) for the development dataset and 0.44 (95%-CI: 0.42; 0.46) for the validation dataset. Kappa coefficients were 0.31 for the development and 0.30 for the validation dataset, respectively. The model explained 20% overall variability (adjusted R²). In conclusion, this residential radon prediction model, based on a large number of measurements, was demonstrated to be robust through validation with an independent dataset. The model is appropriate for predicting radon level exposure of the Swiss population in epidemiological research. Nevertheless, some exposure misclassification and regression to the mean is unavoidable and should be taken into account in future applications of the model.
Resumo:
Childhood wheezing and asthma vary greatly in clinical presentation and time course. The extent to which phenotypic variation reflects heterogeneity in disease pathways is unclear.
Resumo:
Background Falls of elderly people may cause permanent disability or death. Particularly susceptible are elderly patients in rehabilitation hospitals. We systematically reviewed the literature to identify falls prediction tools available for assessing elderly inpatients in rehabilitation hospitals. Methods and Findings We searched six electronic databases using comprehensive search strategies developed for each database. Estimates of sensitivity and specificity were plotted in ROC space graphs and pooled across studies. Our search identified three studies which assessed the prediction properties of falls prediction tools in a total of 754 elderly inpatients in rehabilitation hospitals. Only the STRATIFY tool was assessed in all three studies; the other identified tools (PJC-FRAT and DOWNTON) were assessed by a single study. For a STRATIFY cut-score of two, pooled sensitivity was 73% (95%CI 63 to 81%) and pooled specificity was 42% (95%CI 34 to 51%). An indirect comparison of the tools across studies indicated that the DOWNTON tool has the highest sensitivity (92%), while the PJC-FRAT offers the best balance between sensitivity and specificity (73% and 75%, respectively). All studies presented major methodological limitations. Conclusions We did not identify any tool which had an optimal balance between sensitivity and specificity, or which were clearly better than a simple clinical judgment of risk of falling. The limited number of identified studies with major methodological limitations impairs sound conclusions on the usefulness of falls risk prediction tools in geriatric rehabilitation hospitals.
Resumo:
Background Guidelines for the prevention of coronary heart disease (CHD) recommend use of Framingham-based risk scores that were developed in white middle-aged populations. It remains unclear whether and how CHD risk prediction might be improved among older adults. We aimed to compare the prognostic performance of the Framingham risk score (FRS), directly and after recalibration, with refit functions derived from the present cohort, as well as to assess the utility of adding other routinely available risk parameters to FRS. Methods Among 2193 black and white older adults (mean age, 73.5 years) without pre-existing cardiovascular disease from the Health ABC cohort, we examined adjudicated CHD events, defined as incident myocardial infarction, CHD death, and hospitalization for angina or coronary revascularization. Results During 8-year follow-up, 351 participants experienced CHD events. The FRS poorly discriminated between persons who experienced CHD events vs. not (C-index: 0.577 in women; 0.583 in men) and underestimated absolute risk prediction by 51% in women and 8% in men. Recalibration of the FRS improved absolute risk prediction, particulary for women. For both genders, refitting these functions substantially improved absolute risk prediction, with similar discrimination to the FRS. Results did not differ between whites and blacks. The addition of lifestyle variables, waist circumference and creatinine did not improve risk prediction beyond risk factors of the FRS. Conclusions The FRS underestimates CHD risk in older adults, particularly in women, although traditional risk factors remain the best predictors of CHD. Re-estimated risk functions using these factors improve accurate estimation of absolute risk.