24 resultados para Predatory mite
Resumo:
For low-energy organisms such as bivalves, the costs of thermal compensation of biological rates (synonymous with acclimation or acclimatization) may be higher than the benefits. We therefore conducted two experiments to examine the effect of seasonal temperature changes on behaviour and oxygen consumption. In the first experiment, we examined the effects of seasonal temperature changes on the freshwater bivalve Anodonta anatina, taking measurements each month for a year at the corresponding temperature for that time of year. There was no evidence for compensation of burrowing valve closure duration or frequency, or locomotory speed. In the second experiment, we compared A. anatina at summer and winter temperatures (24 and 4°C, respectively) and found no evidence for compensation of the burrowing rate, valve closure duration or frequency, or oxygen consumption rates during burrowing, immediately after valve closure or at rest. Within the experimental limits of this study, the evidence suggests that thermal compensation of biological rates is not a strategy employed by A. anatina. We argue that this is due to either a lack of evolutionary pressure to acclimatize, or evolutionary pressure to not acclimatize. Firstly, there is little incentive to increase metabolic rate to enhance predatory ability given that these are filter feeders. Secondly, maintained low energetic demand, enhanced at winter temperatures, is essential for predator avoidance, i.e. valve closure. Thus, we suggest that the costs of acclimatization outweigh the benefits in A. anatina.
Resumo:
Elevated inflammation and altered immune responses are features found in atopic asthmatic airways. Recent studies indicate γ-tocopherol (GT) supplementation can suppress airway inflammation in allergic asthma. We studied the effects of in vitro GT supplementation on receptor-mediated phagocytosis and expression of cell surface molecules associated with innate and adaptive immunity on sputum-derived macrophages. Cells from nonsmoking healthy (n = 6) and mild house dust mite-sensitive allergic asthmatics (n = 6) were treated ex vivo with GT (300 µM) or saline (control). Phagocytosis of opsonized zymosan A bioparticles (Saccharomyces cerevisiae) and expression of surface molecules associated with innate and adaptive immunity were assessed using flow cytometry. GT caused significantly decreased (p < 0.05) internalization of attached zymosan bioparticles and decreased (p < 0.05) macrophage expression of CD206, CD36 and CD86 in allergic asthmatics but not in controls. Overall, GT caused downregulation of both innate and adaptive immune response elements, and atopic status appears to be an important factor.
Resumo:
Venom glands are alreadypresent in theoldes t spider group, the Mesothelae. Theglands lie in the anterior portion of the cheliceral basal segment but are very small, and it is doubtful how much the venom contributes to the predatory success. In mygalomorph spiders, the well-developed venom glands are still in the basal segment of the chelicerae and produce powerful venom that is injected via the cheliceral fangs into a victim. In all other spiders (Araneomorphae), the venom glands have become much larger and reach into the prosoma where they can take up a considerable proportion of this body part. Only a few spiders have reduced their venom glands, either partially or completely (Uloboridae, Holarchaeidae and Symphytognathidae are usually mentioned) or modified them significantly (Scytodidae, see Suter and Stratton 2013). As well as using venom, spiders may also use their chelicerae to overwhelm an item of prey. It is primarily a question of size whether a spider chews up small arthropods without applying venom or if it injects venom first. Very small and/or defenceless arthropods are picked up and crashed with the chelicerae, while larger, dangerous or well-defended items are carefully approached and only attacked with venom injection. Some spiders specialize on prey groups, such as noctuid moths (several genera of bola spiders among Araneidae), web spiders (Mimetidae), ants (Zodarion species in Zodariidae, aphantochiline thomisids, several genera among Theridiidae, Salticidae, Clubionidae and Gnaphosidae) or termites (Ammoxenidae). However, these more or less monophagous species amount only to roughly 2 % of all known spider species, while 98 % are polyphagous. From these considerations, it follows that the majority of spider venoms are not tailored to any given invertebrate or insect group but are rather unspecialized to be effective over a broad spectrum of prey types that spiders naturally encounter.
Resumo:
Taxon-specific stable carbon isotope (δ13C) analysis of chitinous remains of invertebrates can provide valuable information about the carbon sources used by invertebrates living in specific habitats of lake ecosystems (for example, sediments, water column, or aquatic vegetation). This is complementary to δ13C of sedimentary organic matter (SOM), which provides an integrated signal of organic matter produced in a lake and its catchment, and of diagenetic processes within sediments. In a sediment record from Strandsjön (Sweden) covering the past circa 140 years, we analyzed SOM geochemistry (δ13C, C:Natomic, organic carbon content) and δ13C of chitinous invertebrate remains in order to examine whether taxon-specific δ13C records could be developed for different invertebrate groups and whether these analyses provide insights into past changes of organic carbon sources for lacustrine invertebrates available in benthic and planktonic compartments of the lake. Invertebrate taxa included benthic chironomids (Chironomus, Chironomini excluding Chironomus, Tanytarsini, and Tanypodinae), filter-feeders on suspended particulate organic matter (Daphnia, Plumatella and Cristatella mucedo), and Rhabdocoela. δ13C of chironomid remains indicated periodic availability of 13C-depleted carbon sources in the benthic environment of the lake as δ13C values of the different chironomid taxa fluctuated simultaneously between -34.7 and -30.5‰ (VPDB). Daphnia and Bryozoa showed parallel changes in their δ13C values which did not coincide with variations in δ13C of chironomids, though, and a 2-3‰ decrease since circa AD 1960. The decrease in δ13C of Daphnia and Bryozoa could indicate a decrease in phytoplankton δ13C as a result of lower lake productivity, which is in accordance with historical information about the lake that suggests a shift to less eutrophic conditions after AD 1960. In contrast, Rhabdocoela cocoons were characterized by relatively high δ13C values (-30.4 to -28.2‰) that did not show a strong temporal trend, which could be related to the predatory feeding mode and wide prey spectrum of this organism group. The taxon-specific δ13C analyses of invertebrate remains indicated that different carbon sources were available for the benthic chironomid larvae than for the filter-feeding Daphnia and bryozoans. Our results therefore demonstrate that taxon-specific analysis of δ13C of organic invertebrate remains can provide complementary information to measurements on bulk SOM and that δ13C of invertebrate remains may allow the reconstruction of past changes in carbon sources and their δ13C in different habitats of lake ecosystems.
Resumo:
Resource-poor yet blissful Switzerland is also one of the most food-secure countries in the world: there are abundant food supplies, relatively low retail prices in terms of purchasing power parity, with few poverty traps. Domestic production covers 70% of net domestic consumption. A vast and efficient food reserve scheme insures against import disruptions. Nonetheless, the food security contribution by the four sectoral policies involved is mutually constrained: our agriculture is protected by the world’s highest tariffs. Huge subsidies, surface payments, and some production quotas substitute market signals with rent maximisation. Moreover, these inefficiencies also prevent trade and investment policies which would keep markets open, development policies which would provide African farmers with the tools to become more competitive, and supply policies which would work against speculators. The paralysing effect of Swiss agricultural policies is exacerbated by new “food security subsidies” in the name of “food sovereignty” while two pending people’s initiatives might yet increase the splendid isolation which in effect reduce Swiss farmer competitiveness and global food security. Is there a solution? Absent a successful conclusion of the Doha Round (WTO) or a Transatlantic Trade and Investment Partnership Agreement (TTIP) further market openings and a consequent “recoupling” of taxpayer support to public goods production remain highly un-likely. To the very minimum Switzerland should resume the agricultural reform process, join other countries trying to prevent predatory behaviour of its investors in developing countries, and regionalise its food reserve.
Resumo:
In Lake Nabugabo, Uganda, a small satellite of the equatorial Lake Victoria, approximately 50% of the indigenous fish species disappeared from the open waters subsequent to establishment of the introduced predatory Nile perch (Lates niloticus). However, several of these species persisted in wetland refugia. Over the past decade, Nile perch in Lake Nabugabo have been intensively fished. Herein we report a resurgence of some indigenous species in open waters. In a multiyear study, we used annual transects in inshore and offshore waters of exposed (no wetland) and wetland habitats to document the pattern of resurgence. In 1995, haplochromine cichlids were largely confined to inshore areas, particularly wetland ecotones, and were rare in Nile perch stomachs, as were most other indigenous species. By 2000 haplochromine cichlids were abundant in inshore and offshore areas of both exposed and wetland transects. Several indigenous noncichlids also reappeared in the main lake, including three of the four original mormyrid species. Between 1995 and 1999, there was a dramatic increase in the proportion of haplochromines in the diet of Nile perch. When haplochromines were rare (1995), Nile perch switched from an invertebrate-dominated diet to piscivory at a large size (30 cm total length). In 2000, however, Nile perch were strongly piscivorous by 5–10 cm total length. The pattern of faunal loss and recovery in Lake Nabugabo demonstrates the importance of refugia in providing the seeds of resurgence and provides a model with which to understand some changes in Lake Victoria.
Resumo:
Sarcoptic mange occurs in free-ranging wild boar (Sus scrofa) but has been poorly described in this species. We evaluated the performance of a commercial indirect enzyme-linked immunosorbent assay (ELISA) for serodiagnosis of sarcoptic mange in domestic swine when applied to wild boar sera. We tested 96 sera from wild boar in populations without mange history ("truly noninfected") collected in Switzerland between December 2012 and February 2014, and 141 sera from free-ranging wild boar presenting mange-like lesions, including 50 live animals captured and sampled multiple times in France between May and August 2006 and three cases submitted to necropsy in Switzerland between April 2010 and February 2014. Mite infestation was confirmed by skin scraping in 20 of them ("truly infected"). We defined sensitivity of the test as the proportion of truly infected that were found ELISA-positive, and specificity as the proportion of truly noninfected that were found negative. Sensitivity and specificity were 75% and 80%, respectively. Success of antibody detection increased with the chronicity of lesions, and seroconversion was documented in 19 of 27 wild boar sampled multiple times that were initially negative or doubtful. In conclusion, the evaluated ELISA has been successfully applied to wild boar sera. It appears to be unreliable for early detection in individual animals but may represent a useful tool for population surveys.
Resumo:
Parasites and pathogens are apparent key factors for the detrimental health of managed European honey bee subspecies, Apis mellifera. Apicultural trade is arguably the main factor for the almost global distribution of most honey bee diseases, thereby increasing chances for multiple infestations/infections of regions, apiaries, colonies and even individual bees. This imposes difficulties to evaluate the effects of pathogens in isolation, thereby creating demand to survey remote areas. Here, we conducted the first comprehensive survey for 14 honey bee pathogens in Mongolia (N = 3 regions, N = 9 locations, N = 151 colonies), where honey bee colonies depend on humans to overwinter. In Mongolia, honey bees, Apis spp., are not native and colonies of European A. mellifera subspecies have been introduced ~60 years ago. Despite the high detection power and large sample size across Mongolian regions with beekeeping, the mite Acarapis woodi, the bacteria Melissococcus plutonius and Paenibacillus larvae, the microsporidian Nosema apis, Acute bee paralysis virus, Kashmir bee virus, Israeli acute paralysis virus and Lake Sinai virus strain 2 were not detected, suggesting that they are either very rare or absent. The mite Varroa destructor, Nosema ceranae and four viruses (Sacbrood virus, Black queen cell virus, Deformed wing virus (DWV) and Chronic bee paralysis virus) were found with different prevalence. Despite the positive correlation between the prevalence of V. destructor mites and DWV, some areas had only mites, but not DWV, which is most likely due to the exceptional isolation of apiaries (up to 600 km). Phylogenetic analyses of the detected viruses reveal their clustering and European origin, thereby supporting the role of trade for pathogen spread and the isolation of Mongolia from South-Asian countries. In conclusion, this survey reveals the distinctive honey bee pathosphere of Mongolia, which offers opportunities for exciting future research.
Resumo:
Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.) and varroa mite (Varroa destructor) samples from Europe and the USA. The virus has a naturally poly-adenylated RNA genome of about 6500 nucleotides with a genome organization and sequence similar to the Tymoviridae (Tymovirales; Tymoviridae), a predominantly plant-infecting virus family. Literature and laboratory analyses indicated that the virus had not previously been described. The virus is very common in French apiaries, mirroring the results from an extensive Belgian survey, but could not be detected in equally-extensive Swedish and Norwegian bee disease surveys. The virus appears to be closely linked to varroa, with the highest prevalence found in varroa samples and a clear seasonal distribution peaking in autumn, coinciding with the natural varroa population development. Sub-genomic RNA analyses show that bees are definite hosts, while varroa is a possible host and likely vector. The tentative name of Bee Macula-like virus (BeeMLV) is therefore proposed. A second, distantly related Tymoviridae-like virus was also discovered in varroa transcriptomes, tentatively named Varroa Tymo-like virus (VTLV).