20 resultados para Precursor Protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rates of protein synthesis (PS) and turnover are more rapid during the neonatal period than during any other stage of postnatal life. Vitamin A and lactoferrin (Lf) can stimulate PS in neonates. However, newborn calves are vitamin A deficient and have a low Lf status, but plasma vitamin A and Lf levels increase rapidly after ingestion of colostrum. Neonatal calves (n = 6 per group) were fed colostrum or a milk-based formula without or with vitamin A, Lf, or vitamin A plus Lf to study PS in the jejunum and liver. l-[(13)C]Valine was intravenously administered to determine isotopic enrichment of free (nonprotein-bound) Val (AP(Free)) in the protein precursor pool, atom percentage excess (APE) of protein-bound Val, fractional protein synthesis rate (FSR) in the jejunum and liver, and isotopic enrichment of Val in plasma (APE(Pla)) and in the CO(2) of exhaled air (APE(Ex)). The APE, AP(Free), and FSR in the jejunum and liver did not differ significantly among groups. The APE(Ex) increased, whereas APE(Pla) decreased over time, but there were no group differences. Correlations were calculated between FSR(Jej) and histomorphometrical and histochemical data of the jejunum, and between FSR(Liv) and blood metabolites. There were negative correlations between FSR(Liv) and plasma albumin concentrations and between FSR(Jej) and the ratio of villus height:crypt depth, and there was a positive correlation between FSR(Jej) and small intestinal cell proliferation in crypts. Hence, there were no effects of vitamin A and Lf and no interactions between vitamin A and Lf on intestinal and hepatic PS. However, FSR(Jej) was correlated with histomorphometrical traits of the jejunum and FSR(Liv) was correlated with plasma albumin concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Neuropeptides, such as substance P (SP), are mediators of neurogenic inflammation and play an important role in inflammatory disorders. To further investigate the role of the SP pathway in inflammatory bowel disease (IBD), we analyzed the following in normal intestinal tissue specimens and in tissue specimens from patients with Crohn's disease (CD) and ulcerative colitis (UC): neurokinin receptor-1 (NK-1R); its isoforms (NK-1R-L and NK-1R-S); its ligand SP, encoded by preprotachykinin-A (PPT-A); and the SP-degradation enzyme, neutral endopeptidase (NEP). METHODS: Real-time quantitative reverse transcription-polymerase chain reaction was used to simultaneously determine the expression of NK-1R-L, NK-1R-S, and PPT-A. Protein levels of NK-1R and NEP were determined by immunoblot analysis. RESULTS: In noninflamed small-bowel tissue samples of CD patients, PPT-A mRNA expression was significantly increased, whereas there was no difference between inflamed or noninflamed UC and normal intestinal tissue samples. Examining subgroups of diverse intestinal segments from CD and UC samples with various levels of inflammation revealed no differences in NK-1R-L and NK-1R-S mRNA expression, whereas there was a tendency toward overall lower NK-1R-S mRNA copy numbers. Immunoblot analysis showed upregulation of NK-1R protein levels in cases of IBD, with more pronounced enhancement in cases of CD than in UC. For NEP, there were no differences in protein levels in normal, CD, and UC intestinal tissues. COMMENTS: These observations suggest a contribution of SP and its receptor, NK-1R, in the local inflammatory reaction in IBD and particularly in ileal CD. Moreover, significant upregulation of PPT-A mRNA in the noninflamed ileum of these patients suggests an influence of inflamed intestines on their healthy counterparts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to its conventional role during protein synthesis, eukaryotic elongation factor 1A is involved in other cellular processes. Several regions of interaction between eukaryotic elongation factor 1A and the translational apparatus or the cytoskeleton have been identified, yet the roles of the different post-translational modifications of eukaryotic elongation factor 1A are completely unknown. One amino acid modification, which so far has only been found in eukaryotic elongation factor 1A, consists of ethanolamine-phosphoglycerol attached to two glutamate residues that are conserved between mammals and plants. We now report that ethanolamine-phosphoglycerol is also present in eukaryotic elongation factor 1A of the protozoan parasite Trypanosoma brucei, indicating that this unique protein modification is of ancient origin. In addition, using RNA-mediated gene silencing against enzymes of the Kennedy pathway, we demonstrate that phosphatidylethanolamine is a direct precursor of the ethanolamine-phosphoglycerol moiety. Down-regulation of the expression of ethanolamine kinase and ethanolamine-phosphate cytidylyltransferase results in inhibition of phosphatidylethanolamine synthesis in T. brucei procyclic forms and, concomitantly, in a block in glycosylphosphatidylinositol attachment to procyclins and ethanolamine-phosphoglycerol modification of eukaryotic elongation factor 1A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Raf-1 kinase inhibitor protein (RKIP) has emerged as a significant metastatic suppressor in a variety of human cancers and is known to inhibit Ras/Raf/MEK/ERK signaling. By suppressing the activation of the NFkB/SNAIL circuit, RKIP can regulate the induction of epithelial-mesenchymal transition (EMT). The aim of this study was to evaluate RKIP expression and to determine its association with clinicopathological features, including EMT in form of tumor budding in pancreatic ductal adenocarcinoma (PDAC). METHODS Staining for RKIP was performed on a multipunch Tissue Microarray (TMA) of 114 well-characterized PDACs with clinico-pathological, follow-up and adjuvant therapy information. RKIP-expression was assessed separately in the main tumor body and in the tumor buds. Another 3 TMAs containing normal pancreatic tissue, precursor lesions (Pancreatic Intraepithelial Neoplasia, PanINs) and matched lymph node metastases were stained in parallel. Cut-off values were calculated by receiver operating characteristic (ROC) curve analysis. RESULTS We found a significant progressive loss of RKIP expression between normal pancreatic ductal epithelia (average: 74%), precursor lesions (PanINs; average: 37%), PDAC (average 20%) and lymph node metastases (average 8%, p<0.0001). RKIP expression was significantly lower in tumor buds (average: 6%) compared to the main tumor body (average 20%; p<0.005). RKIP loss in the tumor body was marginally associated with advanced T-stage (p=0.0599) as well as high-grade peritumoral (p=0.0048) and intratumoral budding (p=0.0373). RKIP loss in the buds showed a clear association with advanced T stage (p=0.0089). CONCLUSIONS The progressive loss of RKIP seems to play a major role in the neoplastic transformation of pancreas, correlates with aggressive features in PDAC and is associated with the presence of EMT in form of tumor budding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With no approved pharmacological treatment, non-alcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease in western countries and its worldwide prevalence continues to increase along with the growing obesity epidemic. Here we show that a high-fat high-sucrose (HFHS) diet, eliciting chronic hepatosteatosis resembling human fatty liver, lowers hepatic NAD(+) levels driving reductions in hepatic mitochondrial content, function and ATP levels, in conjunction with robust increases in hepatic weight, lipid content and peroxidation in C57BL/6J mice. In an effort to assess the effect of NAD(+) repletion on the development of steatosis in mice, nicotinamide riboside (NR), a precursor for NAD(+) biosynthesis, was given to mice concomitant, as preventive strategy (NR-Prev), and as a therapeutic intervention (NR-Ther), to a HFHS diet. We demonstrate that NR prevents and reverts NAFLD by inducing a SIRT1- and SIRT3-dependent mitochondrial unfolded protein response (UPR(mt) ), triggering an adaptive mitohormetic pathway to increase hepatic β-oxidation and mitochondrial complex content and activity. The cell-autonomous beneficial component of NR treatment was revealed in liver-specific Sirt1 KO mice (Sirt1(hep-/-) ), while Apolipoprotein E-deficient (Apoe(-/-) ) mice challenged with a high-fat high-cholesterol diet (HFC), affirmed the use of NR in other independent models of NAFLD. CONCLUSION Our data warrant the future evaluation of NAD(+) boosting strategies to manage the development or progression of NAFLD. This article is protected by copyright. All rights reserved.