35 resultados para Postoperative Myocardial-ischemia
Resumo:
Proteomics describes, analogous to the term genomics, the study of the complete set of proteins present in a cell, organ, or organism at a given time. The genome tells us what could theoretically happen, whereas the proteome tells us what does happen. Therefore, a genomic-centered view of biologic processes is incomplete and does not describe what happens at the protein level. Proteomics is a relatively new methodology and is rapidly changing because of extensive advances in the underlying techniques. The core technologies of proteomics are 2-dimensional gel electrophoresis, liquid chromatography, and mass spectrometry. Proteomic approaches might help to close the gap between traditional pathophysiologic and more recent genomic studies, assisting our basic understanding of cardiovascular disease. The application of proteomics in cardiovascular medicine holds great promise. The analysis of tissue and plasma/serum specimens has the potential to provide unique information on the patient. Proteomics might therefore influence daily clinical practice, providing tools for diagnosis, defining the disease state, assessing of individual risk profiles, examining and/or screening of healthy relatives of patients, monitoring the course of the disease, determining the outcome, and setting up individual therapeutic strategies. Currently available clinical applications of proteomics are limited and focus mainly on cardiovascular biomarkers of chronic heart failure and myocardial ischemia. Larger clinical studies are required to test whether proteomics may have promising applications for clinical medicine. Cardiovascular surgeons should be aware of this increasingly pertinent and challenging field of science.
Resumo:
The clinical manifestations of anti-cancer drug associated cardiac side effects are diverse and can range from acutely induced cardiac arrhythmias to Q-T interval prolongation, changes in coronary vasomotion with consecutive myocardial ischemia, myocarditis, pericarditis, severe contractile dysfunction, and potentially fatal heart failure. The pathophysiology of these adverse effects is similarly heterogeneous and the identification of potential mechanisms is frequently difficult since the majority of cancer patients is not only treated with a multitude of cancer drugs but might also be exposed to potentially cardiotoxic radiation therapy. Some of the targets inhibited by new anti-cancer drugs also appear to be important for the maintenance of cellular homeostasis of normal tissue, in particular during exposure to cytotoxic chemotherapy. If acute chemotherapy-induced myocardial damage is only moderate, the process of myocardial remodeling can lead to progressive myocardial dysfunction over years and eventually induce myocardial dysfunction and heart failure. The tools for diagnosing anti-cancer drug associated cardiotoxicity and monitoring patients during chemotherapy include invasive and noninvasive techniques as well as laboratory investigations and are mostly only validated for anthracycline-induced cardiotoxicity and more recently for trastuzumab-associated cardiac dysfunction.
Resumo:
BACKGROUND: Whether bivalirudin is superior to unfractionated heparin in patients with stable or unstable angina who undergo percutaneous coronary intervention (PCI) after pretreatment with clopidogrel is unknown. METHODS: We enrolled 4570 patients with stable or unstable angina (with normal levels of troponin T and creatine kinase MB) who were undergoing PCI after pretreatment with a 600-mg dose of clopidogrel at least 2 hours before the procedure; 2289 patients were randomly assigned in a double-blind manner to receive bivalirudin, and 2281 to receive unfractionated heparin. The primary end point was the composite of death, myocardial infarction, urgent target-vessel revascularization due to myocardial ischemia within 30 days after randomization, or major bleeding during the index hospitalization (with a net clinical benefit defined as a reduction in the incidence of the end point). The secondary end point was the composite of death, myocardial infarction, or urgent target-vessel revascularization. RESULTS: The incidence of the primary end point was 8.3% (190 patients) in the bivalirudin group as compared with 8.7% (199 patients) in the unfractionated-heparin group (relative risk, 0.94; 95% confidence interval [CI], 0.77 to 1.15; P=0.57). The secondary end point occurred in 134 patients (5.9%) in the bivalirudin group and 115 patients (5.0%) in the unfractionated-heparin group (relative risk, 1.16; 95% CI, 0.91 to 1.49; P=0.23). The incidence of major bleeding was 3.1% (70 patients) in the bivalirudin group and 4.6% (104 patients) in the unfractionated-heparin group (relative risk, 0.66; 95% CI, 0.49 to 0.90; P=0.008). CONCLUSIONS: In patients with stable and unstable angina who underwent PCI after pretreatment with clopidogrel, bivalirudin did not provide a net clinical benefit (i.e., it did not reduce the incidence of the composite end point of death, myocardial infarction, urgent target-vessel revascularization, or major bleeding) as compared with unfractionated heparin, but it did significantly reduce the incidence of major bleeding. (ClinicalTrials.gov number, NCT00262054.)
Resumo:
Background: Cardiac shock wave therapy (CSWT) delivered to the myocardium increases capillary density and regional myocardial blood flow in animal experiments. In addition, nonenzymatic nitric oxide production and the upregulation of vascular growth factor's mRNA by CSWT have been described. The aim of the study was therefore to test its potential to relieve symptoms in patients with chronic stable angina pectoris. Methods: Twenty-one patients (mean age 68.2 ± 8.3 years, 19 males) with chronic refractory angina pectoris and evidence of inducible myocardial ischemia during MIBI-SPECT imaging, were randomized into a treatment (n = 11) and a placebo arm (n = 10). The region of exercise-induced ischemia was treated with echocardiographic guidance during nine sessions over a period of 3 months. One session of CSWT consisted of 200 shots/spot (9--12 spots/session) with an energy intensity of 0.09 mJ/mm2. In the control group acoustic simulation was performed without energy application. Medication was kept unchanged during the whole treatment period. Results: In the treatment group, symptoms improved in 9/11 patients, and the ischemic threshold, determined by cardiopulmonary exercise stress testing, increased from 80 ± 28 to 95 ± 28 W (P= 0.036). In the placebo arm, only 2/10 patients reported an improvement and the ischemic threshold remained unchanged (98 ± 23 to 107 ± 23 W; P= 0.141). The items “physical functioning” (P= 0.043), “general health perception” (P= 0.046), and “vitality” (P= 0.035) of the SF-36 questionnaire significantly improved in the treatment arm, whereas in the placebo arm, no significant change was noted. Neither arrhythmias, troponin rise nor complications were observed during treatment. Conclusions: This placebo controlled trial shows a significant improvement in symptoms, quality of life parameters and ischemic threshold during exercise in patients with chronic refractory angina pectoris treated with CSWT. Thus, CSWT represents a new option for the treatment of patients with refractory AP.
Resumo:
The cardiac late Na (+) current is generated by a small fraction of voltage-dependent Na (+) channels that undergo a conformational change to a burst-gating mode, with repeated openings and closures during the action potential (AP) plateau. Its magnitude can be augmented by inactivation-defective mutations, myocardial ischemia, or prolonged exposure to chemical compounds leading to drug-induced (di)-long QT syndrome, and results in an increased susceptibility to cardiac arrhythmias. Using CytoPatch™ 2 automated patch-clamp equipment, we performed whole-cell recordings in HEK293 cells stably expressing human Nav1.5, and measured the late Na (+) component as average current over the last 100 ms of 300 ms depolarizing pulses to -10 mV from a holding potential of -100 mV, with a repetition frequency of 0.33 Hz. Averaged values in different steady-state experimental conditions were further corrected by the subtraction of current average during the application of tetrodotoxin (TTX) 30 μM. We show that ranolazine at 10 and 30 μM in 3 min applications reduced the late Na (+) current to 75.0 ± 2.7% (mean ± SEM, n = 17) and 58.4 ± 3.5% ( n = 18) of initial levels, respectively, while a 5 min application of veratridine 1 μM resulted in a reversible current increase to 269.1 ± 16.1% ( n = 28) of initial values. Using fluctuation analysis, we observed that ranolazine 30 μM decreased mean open probability p from 0.6 to 0.38 without modifying the number of active channels n, while veratridine 1 μM increased n 2.5-fold without changing p. In human iPSC-derived cardiomyocytes, veratridine 1 μM reversibly increased APD90 2.12 ± 0.41-fold (mean ± SEM, n = 6). This effect is attributable to inactivation removal in Nav1.5 channels, since significant inhibitory effects on hERG current were detected at higher concentrations in hERG-expressing HEK293 cells, with a 28.9 ± 6.0% inhibition (mean ± SD, n = 10) with 50 μM veratridine.
Resumo:
We read with great interest the large-scale network meta-analysis by Kowalewski et al. comparing clinical outcomes of patients undergoing coronary artery bypass grafting (CABG) operated on using minimal invasive extracorporeal circulation (MiECC) or off-pump (OPCAB) with those undergoing surgery on conventional cardiopulmonary bypass (CPB) [1]. The authors actually integrated into single study two recently published meta-analysis comparing MiECC and OPCAB with conventional CPB, respectively [2, 3] into a single study. According to the results of this study, MiECC and OPCAB are both strongly associated with improved perioperative outcomes following CABG when compared with CABG performed on conventional CPB. The authors conclude that MiECC may represent an attractive compromise between OPCAB and conventional CPB. After carefully reading the whole manuscript, it becomes evident that the role of MiECC is clearly undervalued. Detailed statistical analysis using the surface under the cumulative ranking probabilities indicated that MiECC represented the safer and more effective intervention regarding all-cause mortality and protection from myocardial infarction, cerebral stroke, postoperative atrial fibrillation and renal dysfunction when compared with OPCAB. Even though no significant statistical differences were demonstrated between MiECC and OPCAB, the superiority of MiECC is obvious by the hierarchy of treatments in the probability analysis, which ranked MiECC as the first treatment followed by OPCAB and conventional CPB. Thus, MiECC does not represent a compromise between OPCAB and conventional CPB, but an attractive dominant technique in CABG surgery. These results are consistent with the largest published meta-analysis by Anastasiadis et al. comparing MiECC versus conventional CPB including a total of 2770 patients. A significant decrease in mortality was observed when MiECC was used, which was also associated with reduced risk of postoperative myocardial infarction and neurological events [4]. Similarly, another recent meta-analysis by Benedetto et al. compared MiECC versus OPCAB and resulted in comparable outcomes between these two surgical techniques [5]. As stated in the text, superiority of MiECC observed in the current network meta-analysis, when compared with OPCAB, could be attributed to the fact that MiECC offers the potential for complete revascularization, whereas OPCAB poses a challenge for unexperienced surgeons; especially when distal marginal branches on the lateral and/or posterior wall of the heart need revascularization. This is reflected by a significantly lower number of distal anastomoses performed in OPCAB when compared with conventional CPB. Therefore, taking into consideration the literature published up to date, including the results of the current article, we advocate that MiECC should be integrated in the clinical practice guidelines as a state-of-the-art technique and become a standard practice for perfusion in coronary revascularization surgery.
Resumo:
Reperfusion of an organ following prolonged ischemia instigates the pro-inflammatory and pro-coagulant response of ischemia / reperfusion (IR) injury. IR injury is a wide-spread pathology, observed in many clinically relevant situations, including myocardial infarction, stroke, organ transplantation, sepsis and shock, and cardiovascular surgery on cardiopulmonary bypass. Activation of the classical, alternative, and lectin complement pathways and the generation of the anaphylatoxins C3a and C5a lead to recruitment of polymorphonuclear leukocytes, generation of radical oxygen species, up-regulation of adhesion molecules on the endothelium and platelets, and induction of cytokine release. Generalized or pathway-specific complement inhibition using protein-based drugs or low-molecular-weight inhibitors has been shown to significantly reduce tissue injury and improve outcome in numerous in-vitro, ex-vivo, and in-vivo models. Despite the obvious benefits in experimental research, only few complement inhibitors, including C1-esterase inhibitor, anti-C5 antibody, and soluble complement receptor 1, have made it into clinical trials of IR injury. The results are mixed, and the next objectives should be to combine knowledge and experience obtained in the past from animal models and channel future work to translate this into clinical trials in surgical and interventional reperfusion therapy as well as organ transplantation.
Resumo:
Chronic rejection (CR) remains an unsolved hurdle for long-term heart transplant survival. The effect of cold ischemia (CI) on progression of CR and the mechanisms resulting in functional deficit were investigated by studying gene expression, mitochondrial function, and enzymatic activity. Allogeneic (Lew F344) and syngeneic (Lew Lew) heart transplantations were performed with or without 10 h of CI. After evaluation of myocardial contraction, hearts were excised at 2, 10, 40, and 60 days for investigation of vasculopathy, gene expression, enzymatic activities, and mitochondrial respiration. Gene expression studies identified a gene cluster coding for subunits of the mitochondrial electron transport chain regulated in response to CI and CR. Myocardial performance, mitochondrial function, and mitochondrial marker enzyme activities declined in all allografts with time after transplantation. These declines were more rapid and severe in CI allografts (CR-CI) and correlated well with progression of vasculopathy and fibrosis. Mitochondria related gene expression and mitochondrial function are substantially compromised with the progression of CR and show that CI impacts on progression, gene profile, and mitochondrial function of CR. Monitoring mitochondrial function and enzyme activity might allow for earlier detection of CR and cardiac allograft dysfunction.
Resumo:
Morbidity and mortality of myocardial infarction remains significant with resulting left ventricular function presenting as a major determinant of clinical outcome. Protecting the myocardium against ischemia reperfusion injury has become a major therapeutic goal and the identification of key signaling pathways has paved the way for various interventions, but until now with disappointing results. This article describes the recently discovered new role of G-protein-coupled receptor kinase-2 (GRK2), which is known to critically influence the development and progression of heart failure, in acute myocardial injury. This article focuses on potential applications of the GRK2 peptide inhibitor βARKct in ischemic myocardial injury, the use of GRK2 as a biomarker in acute myocardial infarction and discusses the challenges of translating GRK2 inhibition as a cardioprotective strategy to a possible future clinical application.
Resumo:
OBJECTIVES: Membrane-targeted application of complement inhibitors may ameliorate ischemia/reperfusion (I/R) injury by directly targeting damaged cells. We investigated whether Mirococept, a membrane-targeted, myristoylated peptidyl construct derived from complement receptor 1 (CR1) could attenuate I/R injury following acute myocardial infarction in pigs. METHODS: In a closed-chest pig model of acute myocardial infarction, Mirococept, the non-tailed derivative APT154, or vehicle was administered intracoronarily into the area at risk 5 min pre-reperfusion. Infarct size, cardiac function and inflammatory status were evaluated. RESULTS: Mirococept targeted damaged vasculature and myocardium, significantly decreasing infarct size compared to vehicle, whereas APT154 had no effect. Cardioprotection correlated with reduced serum troponin I and was paralleled by attenuated local myocardial complement deposition and tissue factor expression. Myocardial apoptosis (TUNEL-positivity) was also reduced with the use of Mirococept. Local modulation of the pro-inflammatory and pro-coagulant phenotype translated to improved left ventricular end-diastolic pressure, ejection fraction and regional wall motion post-reperfusion. CONCLUSIONS: Local modification of a pro-inflammatory and pro-coagulant environment after regional I/R injury by site-specific application of a membrane-targeted complement regulatory protein may offer novel possibilities and insights into potential treatment strategies of reperfusion-induced injury.
Resumo:
A key energy-saving adaptation to chronic hypoxia that enables cardiomyocytes to withstand severe ischemic insults is hibernation, i.e., a reversible arrest of contractile function. Whereas hibernating cardiomyocytes represent the critical reserve of dysfunctional cells that can be potentially rescued, a lack of a suitable animal model has hampered insights on this medically important condition. We developed a transgenic mouse system for conditional induction of long-term hibernation and a system to rescue hibernating cardiomyocytes at will. Via myocardium-specific induction (and, in turn, deinduction) of a VEGF-sequestering soluble receptor, we show that VEGF is indispensable for adjusting the coronary vasculature to match increased oxygen consumption and exploit this finding to generate a hypoperfused heart. Importantly, ensuing ischemia is tunable to a level at which large cohorts of cardiomyocytes are driven to enter a hibernation mode, without cardiac cell death. Relieving the VEGF blockade even months later resulted in rapid revascularization and full recovery of contractile function. Furthermore, we show that left ventricular remodeling associated with hibernation is also fully reversible. The unique opportunity to uncouple hibernation from other ischemic heart phenotypes (e.g., infarction) was used to determine the genetic program of hibernation; uncovering hypoxia-inducible factor target genes associated with metabolic adjustments and induced expression of several cardioprotective genes. Autophagy, specifically self-digestion of mitochondria, was identified as a key prosurvival mechanism in hibernating cardiomyocytes. This system may lend itself for examining the potential utility of treatments to rescue dysfunctional cardiomyocytes and reverse maladaptive remodeling.
Resumo:
PURPOSE: To prospectively determine the accuracy of 64-section computed tomographic (CT) angiography for the depiction of coronary artery disease (CAD) that induces perfusion defects at myocardial perfusion imaging with single photon emission computed tomography (SPECT), by using myocardial perfusion imaging as the reference standard. MATERIALS AND METHODS: All patients gave written informed consent after the study details, including radiation exposure, were explained. The study protocol was approved by the local institutional review board. In patients referred for elective conventional coronary angiography, an additional 64-section CT angiography study and a myocardial perfusion imaging study (1-day adenosine stress-rest protocol) with technetium 99m-tetrofosmin SPECT were performed before conventional angiography. Coronary artery diameter narrowing of 50% or greater at CT angiography was defined as stenosis and was compared with the myocardial perfusion imaging findings. Quantitative coronary angiography served as a reference standard for CT angiography. RESULTS: A total of 1093 coronary segments in 310 coronary arteries in 78 patients (mean age, 65 years +/- 9 [standard deviation]; 35 women) were analyzed. CT angiography revealed stenoses in 137 segments (13%) corresponding to 91 arteries (29%) in 46 patients (59%). SPECT revealed 14 reversible, 13 fixed, and six partially reversible defects in 31 patients (40%). Sensitivity, specificity, and negative and positive predictive values, respectively, of CT angiography in the detection of reversible myocardial perfusion imaging defects were 95%, 53%, 94%, and 58% on a per-patient basis and 95%, 75%, 96%, and 72% on a per-artery basis. Agreement between CT and conventional angiography was very good (96% and kappa = 0.92 for patient-based analysis, 93% and kappa = 0.84 for vessel-based analysis). CONCLUSION: Sixty-four-section CT angiography can help rule out hemodynamically relevant CAD in patients with intermediate to high pretest likelihood, although an abnormal CT angiography study is a poor predictor of ischemia.
Resumo:
BACKGROUND: Sedation is a cornerstone in the premedication for percutaneous coronary intervention (PCI). Benzodiazepines and opioids are frequently used. Previous results suggest that opioids mimic the adaptation to ischemia during repeated balloon inflations and may provide direct myocardial protection in addition to their sedative effect. However, no comparative data exist. METHODS: We conducted a prospective, randomized, controlled, single-blind trial comparing diazepam and fentanyl in 276 patients undergoing elective PCI. Patients were randomized to either diazepam 5 mg sublingually or fentanyl 0.05 mg or 0.1 mg intravenously at least 5 minutes prior to the first balloon inflation. The primary end-point was the postprocedural elevation of myocardial markers of necrosis defined as an elevation of cardiac troponin T > or = 0.01 ng/ml. RESULTS: The three groups had similar baseline clinical, angiographic, and procedural characteristics, with no significant differences in lesion morphology, procedural complexity, or adjunctive medical treatment. No significant variation in the hemodynamic response to the study drugs was observed in the three groups. The rate of postprocedural troponin T elevation was 28% in the diazepam group, 20% in the fentanyl 0.05 mg group, and 30% in the fentanyl 0.1 mg group (P = 0.26). Rates of postprocedural myocardial infarction were 3%, 2%, and 2%, respectively (P = 0.84), with one case of in-hospital death in the diazepam group and no urgent TVR in the whole study population. CONCLUSION: Although providing a well-tolerated alternative to diazepam for sedation during PCI, fentanyl did not provide additional cardioprotection assessed through the postinterventional elevation of cardiac troponin T during elective coronary intervention.
Resumo:
BACKGROUND: Recanalization of the culprit lesion is the main goal of primary angioplasty for acute ST-segment elevation myocardial infarction (STEMI). Patients presenting with acute myocardial infarction and multivessel disease are, therefore, usually subjected to staged procedures, with the primary percutaneous coronary intervention (PCI) confined to recanalization of the infarct-related artery (IRA). Theoretically at least, early relief of stenoses of non-infarct-related arteries could promote collateral circulation, which could help to limit the infarct size. However, the safety and feasibility of such an approach has not been adequately established. METHODS: In this single-center prospective study we examined 73 consecutive patients who had an acute STEMI and at least one or more lesions > or = 70% in a major epicardial vessel other than the infarct-related artery. In the first 28 patients, forming the multi-vessel (MV) PCI group, all lesions were treated during the primary procedure. In the following 45 patients, forming the culprit-only (CO) PCI group, only the culprit lesion was treated during the initial procedure, followed by either planned-staged or ischemia-driven revascularization of the non-culprit lesions. Fluoroscopy time and contrast dye amount were compared between both groups, and patients were followed up for one year for major adverse cardiac events (MACE) and other significant clinical events. RESULTS: The two groups were well balanced in terms of clinical characteristics, number of diseased vessels and angiographic characteristics of the culprit lesion. In the MV-PCI group, 2.51 lesions per patient were treated using 2.96 +/- 1.34 stents (1.00 lesions and 1.76 +/- 1.17 stents in the CO-PCI group, both p < 0.001). The fluoroscopy time increased from 10.3 (7.2-16.9) min in the CO-PCI group to 12.5 (8.5-19.3) min in the MV-PCI group (p = 0.22), and the amount of contrast used from 200 (180-250) ml to 250 (200-300) ml, respectively (p = 0.16). Peak CK and CK-MB were significantly lower in patients of the MV-PCI group (843 +/- 845 and 135 +/- 125 vs 1652 +/- 1550 and 207 +/- 155 U/l, p < 0.001 and 0.01, respectively). Similar rates of major adverse cardiac events at one year were observed in the two groups (24% and 28% in multi-vessel and culprit treatment groups, p = 0.73). The incidence of new revascularization in both infarct- and non-infarct-related arteries was also similar (24% and 28%, respectively, p = 0.73). CONCLUSION: We may state from this limited experience that a multi-vessel stenting approach for patients with acute STEMI and multi-vessel disease is feasible and probably safe during routine clinical practice. Our data suggest that this approach may help to limit the infarct size. However, larger studies, perhaps using drug-eluting stents, are still needed to further evaluate the safety and efficiency of this procedure, and whether it is associated with a lower need of subsequent revascularization and lower costs.
Resumo:
A large number of studies utilize animal models to investigate therapeutic angiogenesis. However, the lack of a standardized experimental model leaves the comparison of different studies problematic. To establish a reference model of prolonged moderate tissue ischemia, we created unilateral hind limb ischemia in athymic rnu-rats by surgical excision of the femoral vessels. Blood flow of the limb was monitored for 60 days by laser Doppler imaging. Following a short postoperative period of substantially depressed perfusion, the animals showed a status of moderate hind limb ischemia from day 14 onwards. Thereafter, the perfusion remained at a constant level (55.5% of normal value) until the end of the observation period. Histopathological assessment of the ischemic musculature on postoperative days 28 and 60 showed essentially no inflammatory cell infiltrate or fibrosis. However, the mitochondrial activity and capillary-to-fiber ratio of the muscular tissue was reduced to 52.7% of normal, presenting with a significant weakness of the ischemic limb evidenced by a progressive decline in performance. Intramuscular injection of culture-expanded human endothelial progenitor cells (EPC) resulted in a significant increase in blood flow (82.0+/-3.5% of normal), capillary density (1.60+/-0.08/muscle fiber) and smooth muscle covered arterioles (8.0+/-0.6/high power field) in the ischemic hind limb as compared to controls (55.0+/-3.1%; 0.99+/-0.03; 5.0+/-0.2). In conclusion, chronic, moderate hind limb ischemia with consistently reduced perfusion levels persisting over a prolonged period can be established reliably in rnu athymic nude rats and is responsive to pro-angiogenic treatments such as EPC transplantation. This study provides a detailed protocol of a highly reproducible reference model to test novel therapeutic options for limb ischemia.