76 resultados para Pore forming


Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Congenital long-QT syndrome (LQTS) is potentially lethal secondary to malignant ventricular arrhythmias and is caused predominantly by mutations in genes that encode cardiac ion channels. Nearly 25% of patients remain without a genetic diagnosis, and genes that encode cardiac channel regulatory proteins represent attractive candidates. Voltage-gated sodium channels have a pore-forming alpha-subunit associated with 1 or more auxiliary beta-subunits. Four different beta-subunits have been described. All are detectable in cardiac tissue, but none have yet been linked to any heritable arrhythmia syndrome. METHODS AND RESULTS We present a case of a 21-month-old Mexican-mestizo female with intermittent 2:1 atrioventricular block and a corrected QT interval of 712 ms. Comprehensive open reading frame/splice mutational analysis of the 9 established LQTS-susceptibility genes proved negative, and complete mutational analysis of the 4 Na(vbeta)-subunits revealed a L179F (C535T) missense mutation in SCN4B that cosegregated properly throughout a 3-generation pedigree and was absent in 800 reference alleles. After this discovery, SCN4B was analyzed in 262 genotype-negative LQTS patients (96% white), but no further mutations were found. L179F was engineered by site-directed mutagenesis and heterologously expressed in HEK293 cells that contained the stably expressed SCN5A-encoded sodium channel alpha-subunit (hNa(V)1.5). Compared with the wild-type, L179F-beta4 caused an 8-fold (compared with SCN5A alone) and 3-fold (compared with SCN5A + WT-beta4) increase in late sodium current consistent with the molecular/electrophysiological phenotype previously shown for LQTS-associated mutations. CONCLUSIONS We provide the seminal report of SCN4B-encoded Na(vbeta)4 as a novel LQT3-susceptibility gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently it has been shown in rodent malaria models that immunisation with genetically attenuated Plasmodium parasites can confer sterile protection against challenge with virulent parasites. For the mass production of live attenuated Plasmodium parasites for vaccination, safety is a prerequisite. Knockout of a single gene is not sufficient for such a strategy since the parasite can likely compensate for such a genetic modification and a single surviving parasite is sufficient to kill an immunised individual. Parasites must therefore be at least double-attenuated when generating a safe vaccine strain. Genetic double-attenuation can be achieved by knocking out two essential genes or by combining a single gene knockout with the expression of a protein toxic for the parasite. We generated a double-attenuated Plasmodium berghei strain that is deficient in fatty acid synthesis by the knockout of the pdh-e1α gene, introducing a second attenuation by the liver stage-specific expression of the pore-forming bacterial toxin perfringolysin O. With this double genetically attenuated parasite strain, a superior attenuation was indeed achieved compared with single-attenuated strains that were either deficient in pyruvate dehydrogenase (PDH)-E1 or expressed perfringolysin O. In vivo, both single-attenuated strains resulted in breakthrough infections even if low to moderate doses of sporozoites (2,000-5,000) were administered. In contrast, the double genetically attenuated parasite strain, given at moderate doses of 5,000 sporozoites, did not result in blood stage infection and even when administered at 5- to 20-fold higher doses, only single and delayed breakthrough infections were observed. Prime booster immunisation with the double genetically attenuated parasite strain completely protected a susceptible mouse strain from malaria and even a single immunisation conferred protection in some cases and lead to a markedly delayed onset of blood stage infection in others. Importantly, premature rupture of the parasitophorous vacuole membrane by liver stage-specific perfringolysin O expression did not induce host cell death and soluble parasite proteins, which are released into the host cell cytoplasm, have the potential to be processed and presented via MHC class I molecules. This, in turn, might support immunological responses against Plasmodium-infected hepatocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The pore-forming subunit of the cardiac sodium channel, Na v1.5, has been previously found to be mutated in genetically determined arrhythmias. Na v1.5 associates with many proteins that regulate its function and cellular localisation. In order to identify more in situ Na v1.5 interacting proteins, genetically-modified mice with a high-affinity epitope in the sequence of Na v1.5 can be generated. Methods: In this short study, we (1) compared the biophysical properties of the sodium current (I Na) generated by the mouse Na v1.5 (mNa v1.5) and human Na v1.5 (hNa v1.5) constructs that were expressed in HEK293 cells, and (2) investigated the possible alterations of the biophysical properties of the human Na v1.5 construct that was modified with specific epitopes. Results: The biophysical properties of mNa v1.5 were similar to the human homolog. Addition of epitopes either up-stream of the N-terminus of hNa v1.5 or in the extracellular loop between the S5 and S6 transmembrane segments of domain 1, significantly decreased the amount of I Na and slightly altered its biophysical properties. Adding green fluorescent protein (GFP) to the N-terminus did not modify any of the measured biophysical properties of hNa v1.5. Conclusions: These findings have to be taken into account when planning to generate genetically-modified mouse models that harbour specific epitopes in the gene encoding mNa v1.5.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hundreds of genetic variants in SCN5A, the gene coding for the pore-forming subunit of the cardiac sodium channel, Na(v) 1.5, have been described in patients with cardiac channelopathies as well as in individuals from control cohorts. The aim of this study was to characterize the biophysical properties of 2 naturally occurring Na(v) 1.5 variants, p.R689H and p.R689C, found in patients with cardiac arrhythmias and in control individuals. In addition, this study was motivated by the finding of the variant p.R689H in a family with sudden cardiac death (SCD) in children. When expressed in HEK293 cells, most of the sodium current (I(Na)) biophysical properties of both variants were indistinguishable from the wild-type (WT) channels. In both cases, however, an ∼2-fold increase of the tetrodotoxin-sensitive late I(Na) was observed. Action potential simulations and reconstruction of pseudo-ECGs demonstrated that such a subtle increase in the late I(Na) may prolong the QT interval in a nonlinear fashion. In conclusion, despite the fact that the causality link between p.R689H and the phenotype of the studied family cannot be demonstrated, this study supports the notion that subtle alterations of Na(v) 1.5 variants may increase the risk for cardiac arrhythmias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clostridium perfringens β-toxin (CPB) is a β-barrel pore-forming toxin and an essential virulence factor of C. perfringens type C strains, which cause fatal hemorrhagic enteritis in animals and humans. We have previously shown that CPB is bound to endothelial cells within the intestine of affected pigs and humans, and that CPB is highly toxic to primary porcine endothelial cells (pEC) in vitro. The objective of the present study was to investigate the type of cell death induced by CPB in these cells, and to study potential host cell mechanisms involved in this process. CPB rapidly induced lactate dehydrogenase (LDH) release, propidium iodide uptake, ATP depletion, potassium efflux, a marked rise in intracellular calcium [Ca(2+)]i, release of high-mobility group protein B1 (HMGB1), and caused ultrastructural changes characteristic of necrotic cell death. Despite a certain level of caspase-3 activation, no appreciable DNA fragmentation was detected. CPB-induced LDH release and propidium iodide uptake were inhibited by necrostatin-1 and the two dissimilar calpain inhibitors PD150606 and calpeptin. Likewise, inhibition of potassium efflux, chelation of intracellular calcium and treatment of pEC with cyclosporin A also significantly inhibited CPB-induced LDH release. Our results demonstrate that rCPB primarily induces necrotic cell death in pEC, and that necrotic cell death is not merely a passive event caused by toxin-induced membrane disruption, but is propagated by host cell-dependent biochemical pathways activated by the rise in intracellular calcium and inhibitable by necrostatin-1, consistent with the emerging concept of programmed necrosis ("necroptosis").

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the majority of cells, the integrity of the plasmalemma is recurrently compromised by mechanical or chemical stress. Serum complement or bacterial pore-forming toxins can perforate the plasma membrane provoking uncontrolled Ca(2+) influx, loss of cytoplasmic constituents and cell lysis. Plasmalemmal blebbing has previously been shown to protect cells against bacterial pore-forming toxins. The activation of the P2X7 receptor (P2X7R), an ATP-gated trimeric membrane cation channel, triggers Ca(2+) influx and induces blebbing. We have investigated the role of the P2X7R as a regulator of plasmalemmal protection after toxin-induced membrane perforation caused by bacterial streptolysin O (SLO). Our results show that the expression and activation of the P2X7R furnishes cells with an increased chance of surviving attacks by SLO. This protective effect can be demonstrated not only in human embryonic kidney 293 (HEK) cells transfected with the P2X7R, but also in human mast cells (HMC-1), which express the receptor endogenously. In addition, this effect is abolished by treatment with blebbistatin or A-438079, a selective P2X7R antagonist. Thus blebbing, which is elicited by the ATP-mediated, paracrine activation of the P2X7R, is part of a cellular non-immune defense mechanism. It pre-empts plasmalemmal damage and promotes cellular survival. This mechanism is of considerable importance for cells of the immune system which carry the P2X7R and which are specifically exposed to toxin attacks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mycobacterial cell envelope is fascinating in several ways. First, its composition is unique by the exceptional lipid content, which consists of very long-chain (up to C90) fatty acids, the so-called mycolic acids, and a variety of exotic compounds. Second, these lipids are atypically organized into a Gram-negative-like outer membrane (mycomembrane) in these Gram-positive bacteria, as recently revealed by CEMOVIS, and this mycomembrane also contains pore-forming proteins. Third, the mycolic acids esterified a holistic heteropolysaccharide (arabinogalacan), which in turn is linked to the peptidoglycan to form the cell wall skeleton (CWS). In slow-growing pathogenic mycobacterial species, this giant structure is surrounded by a capsular layer composed mainly of polysaccharides, primarily a glycogen-like glucan. The CWS is separated from the plasma membrane by a periplasmic space. A challenging research avenue for the next decade comprises the identification of the components of the uptake and secretion machineries and the isolation and biochemical characterization of the mycomembrane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pathogenic bacteria secrete pore-forming toxins that permeabilize the plasma membrane of host cells. Nucleated cells possess protective mechanisms that repair toxin-damaged plasmalemma. Currently two putative repair scenarios are debated: either the isolation of the damaged membrane regions and their subsequent expulsion as microvesicles (shedding) or lysosome-dependent repair might allow the cell to rid itself of its toxic cargo and prevent lysis. Here we provide evidence that both mechanisms operate in tandem but fulfill diverse cellular needs. The prevalence of the repair strategy varies between cell types and is guided by the severity and the localization of the initial toxin-induced damage, by the morphology of a cell and, most important, by the incidence of the secondary mechanical damage. The surgically precise action of microvesicle shedding is best suited for the instant elimination of individual toxin pores, whereas lysosomal repair is indispensable for mending of self-inflicted mechanical injuries following initial plasmalemmal permeabilization by bacterial toxins. Our study provides new insights into the functioning of non-immune cellular defenses against bacterial pathogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The perforation of the plasmalemma by pore-forming toxins causes an influx of Ca2+ and an efflux of cytoplasmic proteins. In order to ensure cellular survival, lesions have to be identified, plugged and removed from the membrane. The Ca2+-driven fusion of lysosomes with the plasma membrane leads to hydrolysis of sphingomyelin by acid sphingomyelinase and a formation of ceramide platforms in the outer leaflet of the lipid bilayer. We propose that the negative curvature, promoted by tighter packing of lipids in the outer layer, leads to an inward vesiculation of the damaged area for its endocytotic uptake and internal degradation. In contrast, the activation of neutral sphingomyelinase triggers the production of ceramide within the inner leaflet of the lipid bilayer, thereby promoting an outward curvature, which enables the cell to shed the membrane-containing toxin pore into the extracellular space. In this process, ceramide is supported by members of the annexin protein family which act as Ca2+ sensors and as membrane fusion agents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: We examined the role of annexins in bladder urothelium. We characterized expression and distribution in normal bladders, biopsies from patients with bladder pain syndrome, cultured human urothelium and urothelial TEU-2 cells. MATERIALS AND METHODS: Annexin expression in bladder layers was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. We assessed cell survival after exposure to the pore forming bacterial toxin streptolysin O by microscopy and alamarBlue® assay. Bladder dome biopsies were obtained from 8 asymptomatic controls and 28 patients with symptoms of bladder pain syndrome. RESULTS: Annexin A1, A2, A5 and A6 were differentially distributed in bladder layers. Annexin A6 was abundant in detrusor smooth muscle and low in urothelium, while annexin A1 was the highest in urothelium. Annexin A2 was localized to the lateral membrane of umbrella cells but excluded from tight junctions. TEU-2 cell differentiation caused up-regulation of annexin A1 and A2 and down-regulation of annexin A6 mRNA. Mature urothelium dedifferentiation during culture caused the opposite effect, decreasing annexin A1 and increasing annexin A6. Annexin A2 influenced TEU-2 cell epithelial permeability. siRNA mediated knockdown of annexin A1 in TEU-2 cells caused significantly decreased cell survival after streptolysin O exposure. Annexin A1 was significantly reduced in biopsies from patients with bladder pain syndrome. CONCLUSIONS: Several annexins are expressed in human bladder and TEU-2 cells, in which levels are regulated during urothelial differentiation. Annexin A1 down-regulation in patients with bladder pain syndrome might decrease cell survival and contribute to compromised urothelial function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gram-positive bacterial pathogens that secrete cytotoxic pore-forming toxins, such as Staphylococcus aureus and Streptococcus pneumoniae, cause a substantial burden of disease. Inspired by the principles that govern natural toxin-host interactions, we have engineered artificial liposomes that are tailored to effectively compete with host cells for toxin binding. Liposome-bound toxins are unable to lyse mammalian cells in vitro. We use these artificial liposomes as decoy targets to sequester bacterial toxins that are produced during active infection in vivo. Administration of artificial liposomes within 10 h after infection rescues mice from septicemia caused by S. aureus and S. pneumoniae, whereas untreated mice die within 24-33 h. Furthermore, liposomes protect mice against invasive pneumococcal pneumonia. Composed exclusively of naturally occurring lipids, tailored liposomes are not bactericidal and could be used therapeutically either alone or in conjunction with antibiotics to combat bacterial infections and to minimize toxin-induced tissue damage that occurs during bacterial clearance

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NaV-b subunits associate with the NaV-a or pore-forming subunit of the voltage-dependent sodium channel and play critical roles in channel expression, voltage dependence of the channel gating, cell adhesion, signal transduction, and channel pharmacology. Five NaV-b subunits have been identified in humans, all of them implicated in many primary arrhythmia syndromes that cause sudden death or neurologic disorders, including long QT syndrome, Brugada syndrome, cardiac conduction disorders, idiopathic ventricular fibrillation, epilepsy, neurodegenerative diseases, and neuropsychiatric disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The parasitic protozoon Trypanosoma brucei is often considered as one of the earliest branching eukaryotes that have mitochondria capable of oxidative phosphorylation. Its protein import systems are therefore of great interest. Recently, it was shown that the outer mitochondrial membrane protein translocase is of similar complexity yet different composition than in other eukaryotes (1). In the inner membrane however, only a single orthologue of the pore forming Tim17/22/23 protein family was identified and termed TbTim17. Based on this finding it has been suggested that, instead of separate TIM22 and TIM23 complexes as in other eukaryotes, trypanosomes may have a single multifunctional translocase of the inner mitochondrial membrane (TIM) of reduced complexity. To elucidate the composition of the trypanosomal TIM complex we performed co-immunoprecipitations (CoIP) of epitope-tagged TbTim17 in combination with SILAC-based quantitative mass spectrometry. This led to the identification of 22 highly enriched TbTim17-interacting proteins. We tagged two of the top-scoring proteins for reciprocal CoIP analyses and recovered a set of ten proteins that are highly enriched in all three CoIPs. These proteins are excellent candidates for core subunits of the trypanosomal TIM complex. Eight of them were present in the previously determined inner membrane proteome and four show homology to small Tim chaperones. Three candidates, a novel trypanosomatid-specific 42 kDa protein, termed Tim42, and two putative orthologues of probably inactive rhomboid proteases were chosen for further analysis. All three proteins are essential in both life cycle stages and in a cell line that can grow in the absence of mitochondrial DNA. Additionally, their ablation by RNAi results in a strong protein import defect both in vivo and in vitro. Blue native PAGE reveals that Tim42, like TbTim17 is present in a high molecular weight complex. Moreover, ablation of either Tim42 or TbTim17 leads to a destabilization of the complex containing the other protein, suggesting a tight interaction of the two proteins. In summary our study shows that unlike anticipated trypanosomes have a highly complex TIM translocase that has extensively been redesigned. We have characterized three novel TIM subunits that have never been associated with mitochondrial protein import before. Two of them belong to the rhomboid protease family, a member of which recently has been implicated in the ERAD translocation system. Our study provides insight into mitochondrial evolution over large phylogenetic distances and suggests an exciting analogy between protein translocation systems of mitochondria and the ER.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The perforation of the plasmalemma by pore-forming toxins causes an influx of Ca(2+) and an efflux of cytoplasmic constituents. In order to ensure survival, the cell needs to identify, plug and remove lesions from its membrane. Quarantined by membrane folds and isolated by membrane fusion, the pores are removed from the plasmalemma and expelled into the extracellular space. Outward vesiculation and microparticle shedding seem to be the strategies of choice to eliminate toxin-perforated membrane regions from the plasmalemma of host cells. Depending on the cell type and the nature of injury, the membrane lesion can also be taken up by endocytosis and degraded internally. Host cells make excellent use of an initial, moderate rise in intracellular [Ca(2+)], which triggers containment of the toxin-inflicted damage and resealing of the damaged plasmalemma. Additional Ca(2+)-dependent defensive cellular actions range from the release of effector molecules in order to warn neighbouring cells, to the activation of caspases for the initiation of apoptosis in order to eliminate heavily damaged, dysregulated cells. Injury to the plasmalemma by bacterial toxins can be prevented by the early sequestration of bacterial toxins. Artificial liposomes can act as a decoy system preferentially binding and neutralizing bacterial toxins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced production of proinflammatory bradykinin-related peptides, the kinins, has been suggested to contribute to the pathogenesis of periodontitis, a common inflammatory disease of human gingival tissues. In this report, we describe a plausible mechanism of activation of the kinin-generating system, also known as the contact system or kininogen-kallikrein-kinin system, by the adsorption of its plasma-derived components such as high-molecular-mass kininogen (HK), prekallikrein (PK), and Hageman factor (FXII) to the cell surface of periodontal pathogen Porphyromonas gingivalis. The adsorption characteristics of mutant strains deficient in selected proteins of the cell envelope suggested that the surface-associated cysteine proteinases, gingipains, bearing hemagglutinin/adhesin domains (RgpA and Kgp) serve as the major platforms for HK and FXII adhesion. These interactions were confirmed by direct binding tests using microplate-immobilized gingipains and biotinylated contact factors. Other bacterial cell surface components such as fimbriae and lipopolysaccharide were also found to contribute to the binding of contact factors, particularly PK. Analysis of kinin release in plasma upon contact with P. gingivalis showed that the bacterial surface-dependent mechanism is complementary to the previously described kinin generation system dependent on HK and PK proteolytic activation by the gingipains. We also found that several P. gingivalis clinical isolates differed in the relative significance of these two mechanisms of kinin production. Taken together, these data show the importance of this specific type of bacterial surface-host homeostatic system interaction in periodontal infections.