24 resultados para Polymerase Gene
Resumo:
ABSTRACT: INTRODUCTION: In transgenic animal models of sepsis, members of the Bcl-2-family of proteins regulate lymphocyte apoptosis and survival of sepsis. This study investigates the gene regulation of pro- and anti-apoptotic members of the Bcl-2-family of proteins in patients with early stage severe sepsis. METHODS: In this prospective case-control study patients were recruited from three intensive care units in a university hospital. Sixteen patients were enrolled as soon as they fulfilled the criteria of severe sepsis. Ten critically ill but non-septic patients and eleven healthy volunteers served as controls. Blood samples were immediately obtained at inclusion. To confirm the presence of accelerated apoptosis in the patient groups, caspase-3 activation and phosphatidylserine (PS) externalization in CD4+, CD8+ and CD19+ lymphocyte subsets were assessed by flow cytometry. Specific mRNA's of Bcl-2 family members were quantified from whole blood by real-time polymerase chain reaction. To test for statistical significance, Kruskal-Wallis testing with Dunn's multiple comparison test for post hoc testing was performed. RESULTS: In all lymphocyte populations caspase-3 (p<0.05) was activated, which was reflected in an increased PS externalization (p<0.05). Accordingly, lymphocyte counts were decreased in early severe sepsis. In CD4+ T-cells (p<005) and in B-cells (p<0.001) the Bcl-2 protein was decreased in severe sepsis. Gene expression of the BH3-only Bim was massively upregulated as compared to critically ill patients (p<0.001) and 51.6 fold as compared to healthy controls (p<0.05). Bid was increased 12.9 fold compared to critically ill (p<0.001). In the group of the mitochondrial apoptosis-inducers, Bak was upregulated 5.6 fold, while the expression of Bax showed no significant variations. By contrast, the pro-survival members Bcl-2 and Bcl-xl were both downregulated in severe sepsis (p<0.001, p<0.05). CONCLUSIONS: In early severe sepsis a gene expression pattern with induction of the pro-apoptotic Bcl-2 family members Bim, Bid and Bak and a downregulation of the anti-apoptotic Bcl-2 and Bcl-xl was observed in peripheral blood. This constellation may affect cellular susceptibility to apoptosis and complex immune dysfunction in sepsis.
Resumo:
BACKGROUND: In patients with coronary artery disease (CAD), a well grown collateral circulation has been shown to be important. The aim of this prospective study using peripheral blood monocytes was to identify marker genes for an extensively grown coronary collateral circulation. METHODS: Collateral flow index (CFI) was obtained invasively by angioplasty pressure sensor guidewire in 160 individuals (110 patients with CAD, and 50 individuals without CAD). RNA was extracted from monocytes followed by microarray-based gene-expression analysis. 76 selected genes were analysed by real-time polymerase chain reaction (PCR). A receiver operating characteristics analysis based on differential gene expression was then performed to separate individuals with poor (CFI<0.21) and well-developed collaterals (CFI>or=0.21) Thereafter, the influence of the chemokine MCP-1 on the expression of six selected genes was tested by PCR. RESULTS: The expression of 203 genes significantly correlated with CFI (p = 0.000002-0.00267) in patients with CAD and 56 genes in individuals without CAD (p = 00079-0.0430). Biological pathway analysis revealed 76 of those genes belonging to four different pathways: angiogenesis, integrin-, platelet-derived growth factor-, and transforming growth factor beta-signalling. Three genes in each subgroup differentiated with high specificity among individuals with low and high CFI (>or=0.21). Two out of these genes showed pronounced differential expression between the two groups after cell stimulation with MCP-1. CONCLUSIONS: Genetic factors play a role in the formation and the preformation of the coronary collateral circulation. Gene expression analysis in peripheral blood monocytes can be used for non-invasive differentiation between individuals with poorly and with well grown collaterals. MCP-1 can influence the arteriogenic potential of monocytes.
Resumo:
Liver fibrosis is characterized by high expression of the key profibrogenic cytokine transforming growth factor (TGF)-beta and the natural tissue inhibitor of metalloproteinases (TIMP)-1, leading to substantial accumulation of extracellular matrix. Liver fibrosis originates from various chronic liver diseases, such as chronic viral hepatitis that, to date, cannot be treated sufficiently. Thus, novel therapeutics, for example, those derived from Oriental medicine, have gained growing attention. In Korea, extracts prepared from Lindera obtusiloba are used for centuries for treatment of inflammation, improvement of blood circulation and prevention of liver damage, but experimental evidence of their efficacy is lacking. We studied direct antifibrotic effects in activated hepatic stellate cells (HSCs), the main target cell in the fibrotic liver. L. obtusiloba extract (135 mug/ml) reduced the de novo DNA synthesis of activated rat and human HSCs by about 90%, which was not accompanied by cytotoxicity of HSC, primary hepatocytes and HepG2 cells, pointing to induction of cellular quiescence. As determined by quantitative polymerase chain reaction, simultaneous treatment of HSCs with TGF-beta and L. obtusiloba extract resulted in reduction of TIMP-1 expression to baseline level, disruption of the autocrine loop of TGF-beta autoinduction and increased expression of fibrolytic matrix metalloproteinase (MMP)-3. In addition, L. obtusiloba reduced gelatinolytic activity of HSC by interfering with profibrogenic MMP-2 activity. Since L. obtusiloba extract prevented intracellular oxidative stress experimentally induced by tert-butylhydroperoxide, we concluded that the direct antifibrotic effect of L. obtusiloba extract might be mediated by antioxidant activity. Thus, L. obtusiloba, traditionally used in Oriental medicine, may complement treatment of chronic liver disease.
Resumo:
Different life-cycle stages of Trypanosoma brucei are characterized by stage-specific glycoprotein coats. GPEET procyclin, the major surface protein of early procyclic (insect midgut) forms, is transcribed in the nucleolus by RNA polymerase I as part of a polycistronic precursor that is processed to monocistronic mRNAs. In culture, when differentiation to late procyclic forms is triggered by removal of glycerol, the precursor is still transcribed, but accumulation of GPEET mRNA is prevented by a glycerol-responsive element in the 3' UTR. A genome-wide RNAi screen for persistent expression of GPEET in glycerol-free medium identified a novel protein, NRG1 (Nucleolar Regulator of GPEET 1), as a negative regulator. NRG1 associates with GPEET mRNA and with several nucleolar proteins. These include two PUF proteins, TbPUF7 and TbPUF10, and BOP1, a protein required for rRNA processing in other organisms. RNAi against each of these components prolonged or even increased GPEET expression in the absence of glycerol as well as causing a significant reduction in 5.8S rRNA and its immediate precursor. These results indicate that components of a complex used for rRNA maturation can have an additional role in regulating mRNAs that originate in the nucleolus.
Resumo:
Ethanolic fermentation is classically associated with flooding tolerance when plant cells switch from respiration to anaerobic fermentation. However, recent studies have suggested that fermentation also has important functions in the presence of oxygen, mainly in germinating pollen and during abiotic stress. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we characterize the PDC gene family in Arabidopsis. PDC is encoded by four closely related genes. By using real-time quantitative polymerase chain reaction, we determined the expression levels of each individual gene in different tissues, under normal growth conditions, and when the plants were subjected to anoxia or other environmental stress conditions. We show that PDC1 is the only gene induced under oxygen limitation among the PDC1 gene family and that a pdc1 null mutant is comprised in anoxia tolerance but not other environmental stresses. We also characterize the expression of the aldehyde dehydrogenase (ALDH) gene family. None of the three genes is induced by anoxia but ALDH2B7 reacts strongly to ABA application and dehydration, suggesting that ALDH may play a role in aerobic detoxification of acetaldehyde. We discuss the possible role of ethanolic fermentation as a robust back-up energy production pathway under adverse conditions when mitochondrial function is disturbed.
Resumo:
The major multidrug transporter P-glycoprotein (Pgp) contributes to the barrier function of several tissues and organs, including the brain. In a subpopulation of Collies and seven further dog breeds, a 4 base pair deletion has been described in the Pgp-encoding MDR1 gene. This deletion results in the absence of a functional form of Pgp and loss of its protective function. Severe intoxication with the Pgp substrate ivermectin has been attributed to the genetically determined lack of Pgp. An allele-specific polymerase chain reaction (PCR)-based screening method has been developed to detect the mutant allele and to determine if a dog is homozygous or heterozygous for the mutation. Based on this validation, the allele-specific PCR proved to be a robust, reproducible and specific tool, allowing rapid determination of the MDR1 genotype of dogs of at risk breeds using blood samples or buccal swabs.
Resumo:
Replication-dependent histone genes are up-regulated during the G1/S phase transition to meet the requirement for histones to package the newly synthesized DNA. In mammalian cells, this increment is achieved by enhanced transcription and 3' end processing. The non-polyadenylated histone mRNA 3' ends are generated by a unique mechanism involving the U7 small ribonucleoprotein (U7 snRNP). By using affinity purification methods to enrich U7 snRNA, we identified FUS/TLS as a novel U7 snRNP interacting protein. Both U7 snRNA and histone transcripts can be precipitated by FUS antibodies predominantly in the S phase of the cell cycle. Moreover, FUS depletion leads to decreased levels of correctly processed histone mRNAs and increased levels of extended transcripts. Interestingly, FUS antibodies also co-immunoprecipitate histone transcriptional activator NPAT and transcriptional repressor hnRNP UL1 in different phases of the cell cycle. We further show that FUS binds to histone genes in S phase, promotes the recruitment of RNA polymerase II and is important for the activity of histone gene promoters. Thus, FUS may serve as a linking factor that positively regulates histone gene transcription and 3' end processing by interacting with the U7 snRNP and other factors involved in replication-dependent histone gene expression.
Resumo:
PURPOSE Autologous bone is used for augmentation in the course of oral implant placement. Bone grafts release paracrine signals that can modulate mesenchymal cell differentiation in vitro. The detailed genetic response of the bone-derived fibroblasts to these paracrine signals has remained elusive. Paracrine signals accumulate in bone-conditioned medium (BCM) prepared from porcine cortical bone chips. MATERIALS AND METHODS In this study, bone-derived fibroblasts were exposed to BCM followed by a whole genome expression profiling and downstream quantitative reverse transciptase polymerase chain reaction of the most strongly regulated genes. RESULTS The data show that ADM, IL11, IL33, NOX4, PRG4, and PTX3 were differentially expressed in response to BCM in bone-derived fibroblasts. The transforming growth factor beta (TGF-β) receptor 1 antagonist SB431542 blocked the effect of BCM on the expression of the gene panel, except for IL33. CONCLUSION These in vitro results extend existing evidence that cortical bone chips release paracrine signals that provoke a robust genetic response in mesenchymal cells that is not exclusively mediated via the TGF-β receptor. The present data provide further insights into the process of graft consolidation.
Resumo:
A human interleukin 4 (hIL-4)-encoding cDNA (hIL4) probe was used to screen a bovine genomic library, and three clones containing sequences with homology to the human and mouse IL4 cDNAs were isolated. Sequence information obtained from one of these genomic clones was used to design an oligodeoxyribonucleotide primer corresponding to the transcription start point region for use in the polymerase chain reaction (PCR). The PCR-RACE protocol, designed for the rapid amplification of cDNA ends, was successfully used to generate a full-length bovine IL4 (bIL4) cDNA clone from polyadenylated RNA isolated from concanavalin A-stimulated bovine lymph node cells. The bIL4 cDNA is 570 bp in length and contains an open reading frame of 405 nucleotides (nt), coding for a 15.1-kDa precursor of 135 amino acids (aa), which should be reduced to 12.6 kDa for unglycosylated bIL4 after cleavage of a putative hydrophobic leader sequence of 24 aa. The aa sequence contains one possible Asn-linked glycosylation site. Bovine IL4 is shorter than mouse (mIL4) and hIL4, because of a 51-nt deletion in the coding region. Comparison of the overall nt and deduced aa sequences shows a greater homology of bIL4 with hIL4 than with mIL4. This homology is not evenly distributed, however, with the nt sequences 5' and 3' of the coding region showing a much greater homology between all three species than the coding sequence.