65 resultados para Pneumatic accelerator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyclotron laboratory for radioisotope production and multi-disciplinary research at the Bern University Hospital (Inselspital) is based on an 18-MeV proton accelerator, equipped with a specifically conceived 6-m long external beam line, ending in a separate bunker. This facility allows performing daily positron emission tomography (PET) radioisotope production and research activities running in parallel. Some of the latest developments on accelerator and detector physics are reported. They encompass novel detectors for beam monitoring and studies of low current beams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was a Monte Carlo (MC) based investigation of the impact of different radiation transport methods in collimators of a linear accelerator on photon beam characteristics, dose distributions, and efficiency. Thereby it is investigated if it is possible to use different simplifications in the radiation transport for some clinical situations in order to save calculation time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Right axillary artery (RAA) cannulation is increasingly used in cardiac surgery. Little is known about resulting flow patterns in the aorta. Therefore, flow was visualized and analyzed. A mock circulatory circuit was assembled based on a compliant transparent anatomical silicon aortic model. A RAA cannula was connected to a continuous flow rotary blood pump (RBP), pulsatile heart action was provided by a pneumatic ventricular assist device (PVAD). Peripheral vascular resistance, regional flow and vascular compliance were adjusted to obtain physiological flow and pressure waveforms. Colorants were injected automatically for flow visualization. Five flow distributions with a total flow of 4 l/min were tested (%PVAD:%RBP): 100:0, 75:25, 50:50, 25:75, 0:100. Colorant distribution was assessed using quantitative 2D image processing. Continuous flow from the RAA divided in a retrograde and an antegrade portion. Retro- to antegrade flow ratio increased with increasing RAA-flow. At full RBP support flow was stagnant in the ascending aorta. There were distinct flow patterns between the right- and left-sided supra-aortic branches. At full RBP support retrograde flow was demonstrated in the right carotid and right vertebral arteries. Further studies are needed to confirm and evaluate the described flow patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plutonium is present in the environment as a consequence of atmospheric nuclear tests, nuclear weapons production and industrial releases over the past 50 years. To study temporal trends, a high resolution Pu record was obtained by analyzing 52 discrete samples of an alpine firn/ice core from Colle Gnifetti (Monte Rosa, 4450 m a.s.l.), dating from 1945 to 1990. The 239Pu signal was recorded directly, without decontamination or preconcentration steps, using an Inductively Coupled Plasma - Sector Field Mass Spectrometer (ICP-SFMS) equipped with an high efficiency sample introduction system, thus requiring much less sample preparation than previously reported methods. The 239Pu profile reflects the three main periods of atmospheric nuclear weapons testing: the earliest peak lasted from 1954/55 to 1958 and was caused by the first testing period reaching a maximum in 1958. Despite a temporary halt of testing in 1959/60, the Pu concentration decreased only by half with respect to the 1958 peak due to long atmospheric residence times. In 1961/62 Pu concentrations rapidly increased reaching a maximum in 1963, which was about 40% more intense than the 1958 peak. After the signing of the "Limited Test Ban Treaty" between USA and USSR in 1964, Pu deposition decreased very sharply reaching a minimum in 1967. The third period (1967-1975) is characterized by irregular Pu concentrations with smaller peaks (about 20-30% of the 1964 peak) which might be related to the deposition of Saharan dust contaminated by the French nuclear tests of the 1960s. The data presented are in very good agreement with Pu profiles previously obtained from the Col du Dome ice core (by multi-collector ICP-MS) and Belukha ice core (by Accelerator Mass Spectrometry, AMS). Although a semi-quantitative method was employed here, the results are quantitatively comparable to previously published results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Current pulsatile ventricular assist devices operate asynchronous with the left ventricle in fixed-rate or fill-to-empty modes because electrocardiogram-triggered modes have been abandoned. We hypothesize that varying the ejection delay in the synchronized mode yields more precise control of hemodynamics and left ventricular loading. This allows for a refined management that may be clinically beneficial. METHODS: Eight sheep received a Thoratec paracorporeal ventricular assist device (Thoratec Corp, Pleasanton, Calif) via ventriculo-aortic cannulation. Left ventricular pressure and volume, aortic pressure, pulmonary flow, pump chamber pressure, and pump inflow and outflow were recorded. The pump was driven by a clinical pneumatic drive unit (Medos Medizintechnik AG, Stolberg, Germany) synchronously with the native R-wave. The start of pump ejection was delayed between 0% and 100% of the cardiac period in 10% increments. For each of these delays, hemodynamic variables were compared with baseline data using paired t tests. RESULTS: The location of the minimum of stroke work was observed at a delay of 10% (soon after aortic valve opening), resulting in a median of 43% reduction in stroke work compared with baseline. Maximum stroke work occurred at a median delay of 70% with a median stroke work increase of 11% above baseline. Left ventricular volume unloading expressed by end-diastolic volume was most pronounced for copulsation (delay 0%). CONCLUSIONS: The timing of pump ejection in synchronized mode yields control over left ventricular energetics and can be a method to achieve gradual reloading of a recoverable left ventricle. The traditionally suggested counterpulsation is not optimal in ventriculo-aortic cannulation when maximum unloading is desired.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pneumatic balloon dilation and surgical myotomy are the most effective treatments for achalasia. While there is controversy which method is best, the aim of the current study was to identify predictors of symptom recurrence after endoscopic or surgical therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term concentration records of carbonaceous particles (CP) are of increasing interest in climate research due to their not yet completely understood effects on climate. Nevertheless, only poor data on their concentrations and sources before the 20th century are available. We present a first long-term record of organic carbon (OC) and elemental carbon (EC) concentrations – the two main fractions of CP – along with the corresponding fraction of modern carbon (fM) derived from radiocarbon (14C) analysis in ice. This allows a distinction and quantification of natural (biogenic) and anthropogenic (fossil) sources in the past. CP were extracted from an ice archive, with resulting carbon quantities in the microgram range. Analysis of 14C by accelerator mass spectrometry (AMS) was therefore highly demanding. We analysed 33 samples of 0.4 to 1 kg ice from a 150.5 m long ice core retrieved at Fiescherhorn glacier in December 2002 (46°33'3.2" N, 08°04'0.4" E; 3900 m a.s.l.). Samples were taken from bedrock up to the firn/ice transition, covering the time period 1650–1940 and thus the transition from the pre-industrial to the industrial era. Before ~1850, OC was approaching a purely biogenic origin with a mean concentration of 24 μg kg−1 and a standard deviation of 7 μg kg−1. In 1940, OC concentration was about a factor of 3 higher than this biogenic background, almost half of it originating from anthropogenic sources, i.e. from combustion of fossil fuels. The biogenic EC concentration was nearly constant over the examined time period with 6 μg kg−1 and a standard deviation of 1 μg kg−1. In 1940, the additional anthropogenic input of atmospheric EC was about 50 μg kg−1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone research is limited by the methods available for detecting changes in bone metabolism. While dual X-ray absorptiometry is rather insensitive, biochemical markers are subject to significant intra-individual variation. In the study presented here, we evaluated the isotopic labeling of bone using 41Ca, a long-lived radiotracer, as an alternative approach. After successful labeling of the skeleton, changes in the systematics of urinary 41Ca excretion are expected to directly reflect changes in bone Ca metabolism. A minute amount of 41Ca (100 nCi) was administered orally to 22 postmenopausal women. Kinetics of tracer excretion were assessed by monitoring changes in urinary 41Ca/40Ca isotope ratios up to 700 days post-dosing using accelerator mass spectrometry and resonance ionization mass spectrometry. Isotopic labeling of the skeleton was evaluated by two different approaches: (i) urinary 41Ca data were fitted to an established function consisting of an exponential term and a power law term for each individual; (ii) 41Ca data were analyzed by population pharmacokinetic (NONMEM) analysis to identify a compartmental model that describes urinary 41Ca tracer kinetics. A linear three-compartment model with a central compartment and two sequential peripheral compartments was found to best fit the 41Ca data. Fits based on the use of the combined exponential/power law function describing urinary tracer excretion showed substantially higher deviations between predicted and measured values than fits based on the compartmental modeling approach. By establishing the urinary 41Ca excretion pattern using data points up to day 500 and extrapolating these curves up to day 700, it was found that the calculated 41Ca/40Ca isotope ratios in urine were significantly lower than the observed 41Ca/40Ca isotope ratios for both techniques. Compartmental analysis can overcome this limitation. By identifying relative changes in transfer rates between compartments in response to an intervention, inaccuracies in the underlying model cancel out. Changes in tracer distribution between compartments were modeled based on identified kinetic parameters. While changes in bone formation and resorption can, in principle, be assessed by monitoring urinary 41Ca excretion over the first few weeks post-dosing, assessment of an intervention effect is more reliable approximately 150 days post-dosing when excreted tracer originates mainly from bone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In climate research the interest on carbonaceous particles has increased over the last years because of their influence on the radiation balance of the earth. Nevertheless, there is a paucity of available data regarding their concentrations and sources in the past. Such data would be important for a better understanding of their effects and for estimating their influence on future climate. Here, a technique is described to extract carbonaceous particles from ice core samples with subsequent separation of the two main constituents into organic carbon (OC) and elemental carbon (EC) for analysis of their concentrations in the past. This is combined with further analysis of OC and EC 14C/12C ratios by accelerator mass spectrometry (AMS), what can be used for source apportionment studies of past emissions. We further present how 14C analysis of the OC fraction could be used in the future to date any ice core extracted from a high-elevation glacier. Described sample preparation steps to final analysis include the combustion of micrograms of water–insoluble carbonaceous particles, primary collected by filtration of melted ice samples, the graphitisation of the obtained CO2 to solid AMS target material and final AMS measurements. Possible fractionation processes were investigated for quality assurance. Procedural blanks were reproducible and resulted in carbon masses of 1.3 ± 0.6 μg OC and 0.3 ± 0.1 μg EC per filter. The determined fraction of modern carbon (fM) for the OC blank was 0.61 ± 0.13. The analysis of processed IAEA-C6 and IAEA-C7 reference material resulted in fM = 1.521 ± 0.011 and δ13C = −10.85 ± 0.19‰, and fM = 0.505 ± 0.011 and δ13C = −14.21 ± 0.19‰, respectively, in agreement with consensus values. Initial carbon contents were thereby recovered with an average yield of 93%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One limitation to the widespread implementation of Monte Carlo (MC) patient dose-calculation algorithms for radiotherapy is the lack of a general and accurate source model of the accelerator radiation source. Our aim in this work is to investigate the sensitivity of the photon-beam subsource distributions in a MC source model (with target, primary collimator, and flattening filter photon subsources and an electron subsource) for 6- and 18-MV photon beams when the energy and radial distributions of initial electrons striking a linac target change. For this purpose, phase-space data (PSD) was calculated for various mean electron energies striking the target, various normally distributed electron energy spread, and various normally distributed electron radial intensity distributions. All PSD was analyzed in terms of energy, fluence, and energy fluence distributions, which were compared between the different parameter sets. The energy spread was found to have a negligible influence on the subsource distributions. The mean energy and radial intensity significantly changed the target subsource distribution shapes and intensities. For the primary collimator and flattening filter subsources, the distribution shapes of the fluence and energy fluence changed little for different mean electron energies striking the target, however, their relative intensity compared with the target subsource change, which can be accounted for by a scaling factor. This study indicates that adjustments to MC source models can likely be limited to adjusting the target subsource in conjunction with scaling the relative intensity and energy spectrum of the primary collimator, flattening filter, and electron subsources when the energy and radial distributions of the initial electron-beam change.