152 resultados para Platelet adhesion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD34 (+) progenitor cells are a promising source of regeneration in atherosclerosis or ischemic heart disease. However, as recently published, CD34(+) progenitor cells have the potential to differentiate not only into endothelial cells but also into foam cells upon interaction with platelets. The mechanism of platelet-induced differentiation of progenitor cells into foam cells is as yet unclear. In the present study we investigated the role of scavenger receptor (SR)-A and CD36 in platelet-induced foam cell formation. Human CD34(+) progenitor cells were freshly derived from human umbilical veins and were co-incubated with platelets (2 x 10(8)/mL) up to 14 days resulting in large lipid-laden foam cells. Developing macrophages expressed SR-A, CD36, and Lox-1 as measured by fluorescent-activated cell sorting analysis. The presence of a blocking anti-CD36 or anti-SR-A antibody nearly abrogated foam cell formation, whereas anti-Lox-1 did not affect foam cell formation. Consistently blocking either anti-CD36 or anti-SR-A antibody significantly reduced the phagocytosis of lipid-laden platelets by macrophages. We conclude that CD36 and SR-A play an important role in platelet-induced foam cell formation from CD34(+) progenitor cells and thus represent a promising target to inhibit platelet-induced foam cell formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction between differentiating neurons and the extracellular environment guides the establishment of cell polarity during nervous system development. Developing neurons read the physical properties of the local substrate in a contact-dependent manner and retrieve essential guidance cues. In previous works we demonstrated that PC12 cell interaction with nanogratings (alternating lines of ridges and grooves of submicron size) promotes bipolarity and alignment to the substrate topography. Here, we investigate the role of focal adhesions, cell contractility, and actin dynamics in this process. Exploiting nanoimprint lithography techniques and a cyclic olefin copolymer, we engineered biocompatible nanostructured substrates designed for high-resolution live-cell microscopy. Our results reveal that neuronal polarization and contact guidance are based on a geometrical constraint of focal adhesions resulting in an angular modulation of their maturation and persistence. We report on ROCK1/2-myosin-II pathway activity and demonstrate that ROCK-mediated contractility contributes to polarity selection during neuronal differentiation. Importantly, the selection process confined the generation of actin-supported membrane protrusions and the initiation of new neurites at the poles. Maintenance of the established polarity was independent from NGF stimulation. Altogether our results imply that focal adhesions and cell contractility stably link the topographical configuration of the extracellular environment to a corresponding neuronal polarity state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During development and regeneration of the mammalian nervous system, directional signals guide differentiating neurons toward their targets. Soluble neurotrophic molecules encode for preferential direction over long distances while the local topography is read by cells in a process requiring the establishment of focal adhesions. The mutual interaction between overlapping molecular and topographical signals introduces an additional level of control to this picture. The role of the substrate topography was demonstrated exploiting nanotechnologies to generate biomimetic scaffolds that control both the polarity of differentiating neurons and the alignment of their neurites. Here PC12 cells contacting nanogratings made of copolymer 2-norbornene ethylene (COC), were alternatively stimulated with Nerve Growth Factor, Forskolin, and 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic (8CPT-2Me-cAMP) or with a combination of them. Topographical guidance was differently modulated by the alternative stimulation protocols tested. Forskolin stimulation reduced the efficiency of neurite alignment to the nanogratings. This effect was linked to the inhibition of focal adhesion maturation. Modulation of neurite alignment and focal adhesion maturation upon Forskolin stimulation depended on the activation of the MEK/ERK signaling but were PkA independent. Altogether, our results demonstrate that topographical guidance in PC12 cells is modulated by the activation of alternative neuronal differentiation pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Posttraumatic stress disorder (PTSD) and circulating cellular adhesion molecules (CAMs) predict cardiovascular risk. We hypothesized a positive relationship between PTSD caused by myocardial infarction (MI) and soluble CAMs. We enrolled 22 post-MI patients with interviewer-rated PTSD and 22 post-MI patients with no PTSD. At 32±6months after index MI, all patients were re-scheduled to undergo the Clinician-Administered PTSD Scale (CAPS) interview and had blood collected to assess soluble CAMs at rest and after the CAPS interview. Relative to patients with no PTSD, those with PTSD had significantly higher levels of soluble vascular cellular adhesion molecule (sVCAM)-1 and intercellular adhesion molecule (sICAM)-1 at rest and, controlling for resting CAM levels, significantly higher sVCAM-1 and sICAM-1 after the interview. Greater severity of PTSD predicted significantly higher resting levels of sVCAM-1 and soluble P-selectin in patients with PTSD. At follow-up, patients with persistent PTSD (n=15) and those who had remitted (n=7) did not significantly differ in CAM levels at rest and after the interview; however, both these groups had significantly higher sVCAM-1 and sICAM-1 at rest and also after the interview compared to patients with no PTSD. Elevated levels of circulating CAMs might help explain the psychophysiologic link of PTSD with cardiovascular risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug-drug interaction between statins metabolised by cytochrome P450 3A4 and clopidogrel have been claimed to attenuate the inhibitory effect of clopidogrel. However, published data regarding this drug-drug interaction are controversial. We aimed to determine the effect of fluvastatin and atorvastatin on the inhibitory effect of dual antiplatelet therapy with acetylsalicylic acid (ASA) and clopidogrel. One hundred one patients with symptomatic stable coronary artery disease undergoing percutaneous coronary intervention and drug-eluting stent implantation were enrolled in this prospective randomised study. After an interval of two weeks under dual antiplatelet therapy with ASA and clopidogrel, without any lipid-lowering drug, 87 patients were randomised to receive a treatment with either fluvastatin 80 mg daily or atorvastatin 40 mg daily in addition to the dual antiplatelet therapy for one month. Platelet aggregation was assessed using light transmission aggregometry and whole blood impedance platelet aggregometry prior to randomisation and after one month of receiving assigned statin and dual antiplatelet treatment. Platelet function assessment after one month of statin and dual antiplatelet therapy did not show a significant change in platelet aggregation from 1st to 2nd assessment for either statin group. There was also no difference between atorvastatin and fluvastatin treatment arms. In conclusion, neither atorvastatin 40 mg daily nor fluvastatin 80 mg daily administered in combination with standard dual antiplatelet therapy following coronary drug-eluting stent implantation significantly interfere with the antiaggregatory effect of ASA and clopidogrel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foetal alloimmune thrombocytopenia (FNAIT) is often treated transplacentally with maternally administered i.v. immunoglobulins, but not all foetuses show a consistent platelet increase during such treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tenascins are extracellular matrix glycoproteins associated with cell motility, proliferation and differentiation. Tenascin-C inhibits cell spreading by binding to fibronectin; tenascin-R and tenascin-X also have anti-adhesive properties in vitro. Here we have studied the adhesion modulating properties of the most recently characterized tenascin, tenascin-W. C2C12 cells, a murine myoblast cell line, will form broad lamellipodia with stress fibers and focal adhesion complexes after culture on fibronectin. In contrast, C2C12 cells cultured on tenascin-W fail to spread and form stress fibers or focal adhesion complexes, and instead acquire a multipolar shape with short, actin-tipped pseudopodia. The same stellate morphology is observed when C2C12 cells are cultured on a mixture of fibronectin and tenascin-W, or on fibronectin in the presence of soluble tenascin-W. Tenascin-W combined with fibronectin also inhibits the spreading of mouse embryo fibroblasts when compared with cells cultured on fibronectin alone. The similarity between the adhesion modulating effects of tenascin-W and tenascin-C in vitro led us to study the possibility of tenascin-W compensating for tenascin-C in tenascin-C knockout mice, especially during epidermal wound healing. Dermal fibroblasts harvested from a tenascin-C knockout mouse express tenascin-W, but dermal fibroblasts taken from a wild type mouse do not. However, there is no upregulation of tenascin-W in the dermis of tenascin-C knockout mice, or in the granulation tissue of skin wounds in tenascin-C knockout animals. Similarly, tenascin-X is not upregulated in early wound granulation tissue in the tenascin-C knockout mice. Thus, tenascin-W is able to inhibit cell spreading in vitro and it is upregulated in dermal fibroblasts taken from the tenascin-C knockout mouse, but neither it nor tenascin-X are likely to compensate for missing tenascin-C during wound healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of various combinations of enamel matrix derivative (EMD) and grafting materials has been shown to promote periodontal wound healing/regeneration. However, the downstream cellular behavior of periodontal ligament (PDL) cells and osteoblasts has not yet been studied. Furthermore, it is unknown to what extent the bleeding during regenerative surgery may influence the adsorption of exogenous proteins to the surface of bone grafting materials and the subsequent cellular behavior. In the present study, the aim is to test EMD adsorption to the surface of natural bone mineral (NBM) particles in the presence of blood and determine the effect of EMD coating to NBM particles on downstream cellular pathways, such as adhesion, proliferation, and differentiation of primary human osteoblasts and PDL cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surgical repair of the rotator cuff repair is one of the most common procedures in orthopedic surgery. Despite it being the focus of much research, the physiological tendon-bone insertion is not recreated following repair and there is an anatomic non-healing rate of up to 94%. During the healing phase, several growth factors are upregulated that induce cellular proliferation and matrix deposition. Subsequently, this provisional matrix is replaced by the definitive matrix. Leukocyte- and platelet-rich fibrin (L-PRF) contain growth factors and has a stable dense fibrin matrix. Therefore, use of LPRF in rotator cuff repair is theoretically attractive. The aim of the present study was to determine 1) the optimal protocol to achieve the highest leukocyte content; 2) whether L-PRF releases growth factors in a sustained manner over 28 days; 3) whether standard/gelatinous or dry/compressed matrix preparation methods result in higher growth factor concentrations. 1) The standard L-PRF centrifugation protocol with 400 x g showed the highest concentration of platelets and leukocytes. 2) The L-PRF clots cultured in medium showed a continuous slow release with an increase in the absolute release of growth factors TGF-β1, VEGF and MPO in the first 7 days, and for IGF1, PDGF-AB and platelet activity (PF4=CXCL4) in the first 8 hours, followed by a decrease to close to zero at 28 days. Significantly higher levels of growth factor were expressed relative to the control values of normal blood at each culture time point. 3) Except for MPO and the TGFβ-1, there was always a tendency towards higher release of growth factors (i.e., CXCL4, IGF-1, PDGF-AB, and VEGF) in the standard/gelatinous- compared to the dry/compressed group. L-PRF in its optimal standard/gelatinous-type matrix can store and deliver locally specific healing growth factors for up to 28 days and may be a useful adjunct in rotator cuff repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stem cell based autologous grafting has recently gained mayor interest in various surgical fields for the treatment of extensive tissue defects. CD34(+) and CD133(+) cells that can be isolated from the pool of bone marrow mononuclear cells (BMC) are capable of differentiating into mature endothelial cells in vivo. These endothelial progenitor cells (EPC) are believed to represent a major portion of the angiogenic regenerative cells that are released from bone marrow when tissue injury has occurred. In recent years tissue engineers increasingly looked at the process of vessel neoformation because of its major importance for successful cell grafting to replace damaged tissue. Up to now one of the greatest problems preventing a clinical application is the large scale of expansion that is required for such purpose. We established a method to effectively enhance the expansion of CD34(+) and CD133(+) cells by the use of platelet-released growth factors (PRGF) as a media supplement. PRGF were prepared from thrombocyte concentrates and used as a media supplement to iscove's modified dulbecco's media (IMDM). EPC were immunomagnetically separated from human bone morrow monocyte cells and cultured in IMDM + 10% fetal calf serum (FCS), IMDM + 5%, FCS + 5% PRGF and IMDM + 10% PRGF. We clearly demonstrate a statistically significant higher and faster cell proliferation rate at 7, 14, 21, and 28 days of culture when both PRGF and FCS were added to the medium as opposed to 10% FCS or 10% PRGF alone. The addition of 10% PRGF to IMDM in the absence of FCS leads to a growth arrest from day 14 on. In histochemical, immunocytochemical, and gene-expression analysis we showed that angiogenic and precursor markers of CD34(+) and CD133(+) cells are maintained during long-term culture. In summary, we established a protocol to boost the expansion of CD34(+) and CD133(+) cells. Thereby we provide a technical step towards the clinical application of autologous stem cell transplantation.